

SMITHSONIAN ?

ENCYCLOPEDIA

THE 100 MOST INCREDIBLE **CREATURES** ON THE **PLANET**

Derek Harvey

AMAZING ANATOMY

MAMMALS 18 **BIRDS** 46 REPTILES 60 74 **AMPHIBIANS FISH** 82 **INVERTEBRATES** 88

RECORD-BREAKERS 106

ANIMAL **ATHLETES**

MAMMALS 110 132 **BIRDS** REPTILES 144 **AMPHIBIANS** 000 148 **FISH** 156 **INVERTEBRATES**

RECORD-BREAKERS 168

DK LONDON

Senior Designer Senior Editor Ina Stradins Angeles Gavira

David Ball, Alison Gardner, Anna Hall,

Kim Bryan, Jemima Dunne, Wendy Horobin, Peter Laws, Fiona Macdonald, Francis Wong Janet Mohun, Steve Setford, Laura Wheadon

DK Picture Library

Editorial Assistant Liz Moore

Jacket Designers Laura Brim, Silke Spingies

Jacket Editor Manisha Majithia Production Controllers Production Editor

Erika Pepe, Alice Sykes Victoria Khroundina **US Editor** Margaret Parish

LONDON, NEW YORK, MELBOURNE, **MUNICH, AND DELHI**

Managing Art Editor Michelle Baxter

Managing Editor Camilla Hallinan

Art Director Philip Ormerod

Publisher Sarah Larter

Publishing Director Jonathan Metcalf

Associate Publishing Director Liz Wheeler

DK INDIA

Senior Art Editor Senior Editor Devika Dwarkadas Soma B. Chowdhury

Shefali Upadhyay Balwant Singh

Editors

Suefa Lee,

Art Editors Suhita Dharamjit, Parul Gambhir, Rakesh Khundongbam, Vaibhav Rastogi

Rajesh Singh Adhikari,

Arvind Kumar, Tanveer Zaidi Consultant Art Director DTP Manager

Neha Pande **Managing Editors** Rohan Sinha, DTP Designers Alka Thakur Hazarika **Production Manager**

Pankaj Sharma

MOST DEVOTED MOTHER

LIFE **STORIES**

MAMMALS 172 **BIRDS** 188 **REPTILES** 196 **FISH** 198 **INVERTEBRATES** 200

RECORD-BREAKERS 216

SUPERNATURAL SENSES

MAMMALS 220 **BIRDS** 234 **INVERTEBRATES** 236

RECORD-BREAKERS 248

Smithsonian Enterprises: Vice President Carol LeBlanc **Director of Licensing** Brigid Ferraro Licensing Manager Ellen Nanney Smithsonian Product Development Institution Coordinator Kealy Wilson

ILLUSTRATORS

Medi-Mation Raj Doshi, Arran Lewis **Dotnamestudios** Andrew Kerr

> Peter Minister Peter Bull

First American Edition, 2012 Published in the United States by DK Publishing, 375 Hudson Street, New York, New York 10014

Copyright © 2012 Dorling Kindersley Limited All rights reserved

12 13 14 15 10 9 8 7 6 5 4 3 2 1

001—183047—Sep/2012

Without limiting the rights under copyright reserved above, no part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any means (electronic, mechanical, photocopying, recording, or otherwise), without prior written permission of the copyright owner and the above publisher of this book.

A catalog record for this book is available from the Library of Congress. ISBN 978-0-7566-9793-8

GLOSSARY	250
02 42	
INDEX	253

DK books are available at special discounts when purchased in bulk for sales promotions, premiums, fund-raising, or educational use. For details, contact: DK Publishing Special Markets, 375 Hudson Street, New York, New York 10014 or SpecialSales@dk.com.

Printed and bound in China by Leo Paper Products

Discover more at www.dk.com

LIVING PLANET

Life began in Earth's oceans about 3.5 billion years ago. It has since spread, in a spectacular number of different forms, to every corner of the planet. Among the host of animals that inhabit land and sea there are some true superstars of nature that boast amazing abilities, incredible bodies, and fascinating lifestyles.

CULTIVATED LAND

Nearly one-tenth of the Earth's land area is used for farming. Cultivated land supports plant crops and domesticated animals, together with wild species that have managed to survive alongside humans.

9.5%

hibernate in winter, others migrate south.

BOREAL FOREST

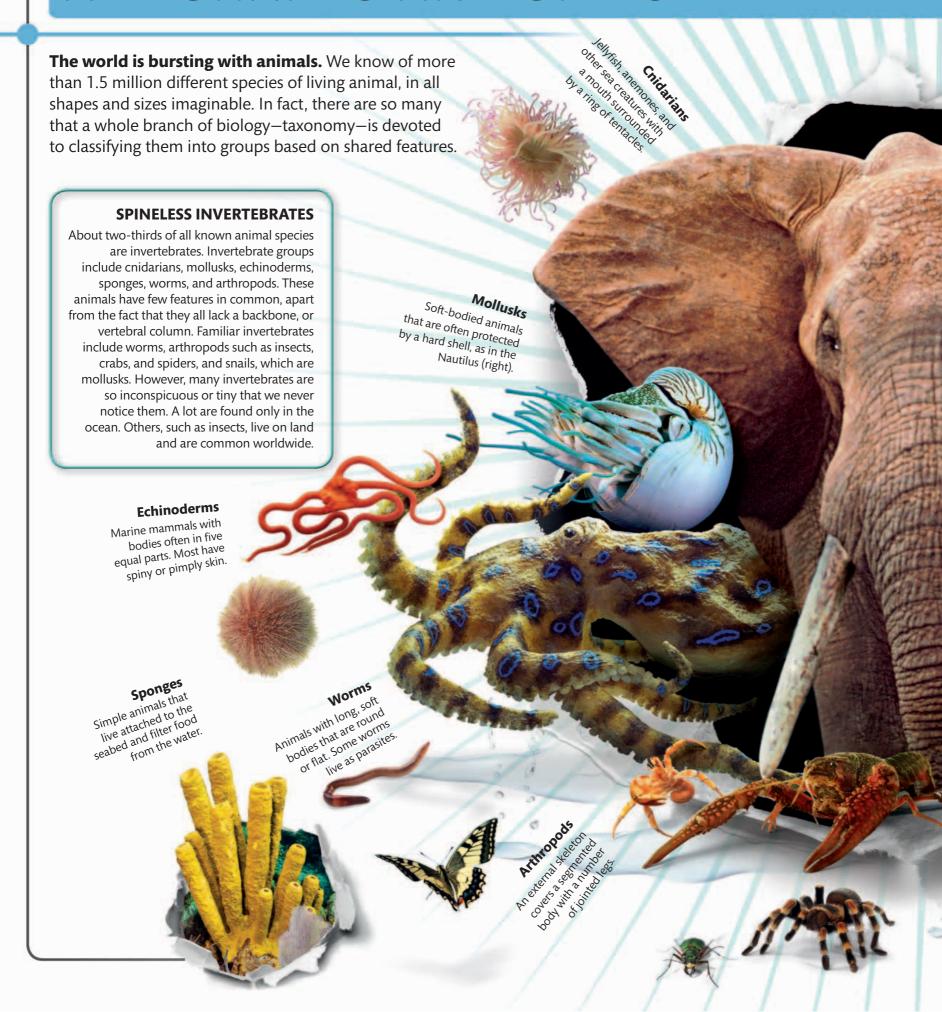
The dense forests of the far north are made up mainly of conifer trees. In the short summer there is plenty to eat, but food is scarce in the long, cold winter. Some animals

SAVANNA

Tropical savanna grassland is hot all year round, but there are distinct dry and wet seasons. A few trees and shrubs offer some shade. On the African savanna, grazing animals such as wildebeest and zebra follow the rains in search of fresh grass, preyed on by lions and other carnivores.

POLAR ICE

The polar regions—the Arctic
Ocean around the North Pole,
and Antarctica around the
South Pole—are mostly
covered by thick ice. Many
polar animals use thick
layers of fur, feathers, or
fat to keep out the cold,
while some fish have
antifreeze in their blood.


11%

TROPICAL FOREST

The lush, evergreen forests near the equator are home to at least half of the world's plant and animal species. Often called "jungles," these forests are always warm and wet. Their flowers, fruits, and leaves are a rich source of food. Animals live at every level, from the tops of the tallest trees to the dark forest floor.

The world's biomes **TEMPERATE FOREST OCEAN LIFE** Biologists divide the world into "biomes," Broadleaved, deciduous trees flourish Earth is a watery regions with similar landscapes, climates, 71% in mild (temperate) climates. Summers world, with vast and wildlife. The figures below show are warm, winters cool, and rain falls oceans covering how much of the Earth's land surface year-round. Birds, bears, deer, and nearly threeeach biome occupies. small mammals thrive in such forests. quarters of its surface. Shallow seas near land, especially around coral reefs, are **TEMPERATE GRASSLAND** rich in wildlife. Animals that live out in the open ocean Cooler than savanna, temperate must be strong swimmers to move around in the currents. grasslands also have less rainfall and In the deepest ocean, up to 7 miles (11 km) below the so cannot support trees or shrubs. surface, animals must cope with total darkness, very cold They are home to large grazing temperatures, and pressures that would crush a human. animals such as bison and antelope. **MEDITERRANEAN** Regions with a Mediterraneanstyle climate have short, wet, mild winters and long, dry summers. Shrubs, short trees, and cacti and other droughtresistant plants grow on their rugged landscapes. Animals include wild goats, lynx, jackals, boar, and vultures. **TUNDRA** The flat, treeless tundra lands surrounding the Arctic are free of ice, but below the surface layer the soil is always frozen. The tundra comes alive with flowers and insects in the summer. and many birds and mammals migrate there to feed and breed. **DESERT** Places with less than 10 in (25 cm) of rain a year are called deserts. They are usually hot-up to a scorching 120°F (50°C) 19.5% by day-and either rocky or covered with shifting sand. Desert animals can survive on very little water. Many are active at night, when it is cooler.

ALL SHAPES AND SIZES

EVER-CHANGING ANIMALS

A striped coat is a useful characteristic for zebras. It helps them to recognize and bond with their own kind-an important ability for herd animals.

Nothing stays the same for long in nature. Over many generations living things gradually change, or adapt, so that they are better suited to their surroundings. Those that fail to adapt become extinct—they die out. This process of slow change is called evolution, and it has produced the amazing variety of animals that we see today.

HOW EVOLUTION WORKS

Young animals tend to look like their parents because characteristics are copied from parents to offspring. But this copying process is not exact, and sometimes the young develop new characteristics. If a new characteristic is useful—such as a coat color that provides better camouflage-the animal is likely to live a longer and more successful life, producing more offspring that will also have the helpful trait.

Barapasaurus measured 59 ft (18 m) from its head to the tip of its tail

Body was bulky and heavy

SUPERSIZED MAMMALS

Major events, such as vast volcanic eruptions or meteorite strikes, can change animals' surroundings so rapidly that they cannot adapt quickly enough and many species die out. This is called a mass extinction.

After a mass extinction 65 million years ago wiped out the dinosaurs, large mammals evolved to take their place. They included a giant rhinoceros, 18 ft (5.5 m) tall, and giant sloths, beavers, and armadillos,

Flexible tail helped to balance the long neck

Giant armadillo

Modern armadillo

is much smaller

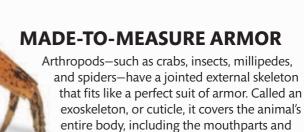
Glyptodon, a distant relative of modern armadillos, lived from around 5 million to 10,000 years ago.


> Sauropods walked on the tips of their toes

Barapasaurus-a loser

Pillarlike legs

Sauropod dinosaurs, such as this Barapasaurus, were among the many losers of the mass extinction 65 million years ago. The sauropods included the largest and heaviest animals ever to have lived on land.


Thick, scaly skin

BODY MATTERS

Animal bodies are made up of cells, which are grouped together to form tissues such as muscle and bone, and organs such as brains, kidneys, eyes, Power and stealth and skin. The arrangement of tissues and organs in animal bodies varies The largest of the big cats, the tiger is the ultimate hunting machine. enormously, but it tends to be similar in closely related kinds of animal. Its body is slinky enough to creep It is almost always the best arrangement for each species' unique way of life. unnoticed through low vegetation, yet powerful enough to bring **Sockets for** down prey as large as wild oxen. forward-facing Backbone is flexible, eyes, which can making the tiger judge distances graceful and agile acurately Short skull has Teeth include canines attachment points for stabbing and for powerful cheek teeth for slicing jaw muscles Flexible jaw **ANIMALS WITH BACKBONES** opens wide Vertebrates (birds, mammals, reptiles, to engulf large prey amphibians, and fish) have an internal skeleton made of cartilage or bone. Deep chest The skeleton supports the body, with room for provides a frame to which muscles large lungs can attach, and protects internal organs. The brain is housed inside a skull. The spinal SIMILAR, BUT DIFFERENT cord—a vital part of the nervous system—runs through a backbone that is made up of Despite nature's amazing variety, some species small, interlocking bones called vertebrae. are very alike. Often look-alikes are related, but not always. At first glance, the longbeaked echidna of Australia resembles a European hedgehog, but it is actually a No need for legs Long, powerful cousin of the platypus. Neither hedgehogs legs allow the Most vertebrates have either limbs (arms, nor echidnas can run fast or fight fiercely to tiger to leap up legs, wings, or flippers) or fins. Snakes to 30 ft (10 m) escape danger, but both have evolved a similar are an exception. The skeleton of a defense-sharp spines to keep enemies at bay. snake-such as this cobra-consists of iust a skull, backbone, and ribs. The Hedgehog ribs on the snake's belly can move apart when it swallows a large meal. When threatened, a Tail section hedgehog can roll itself into Supersharp, has no ribs a tight, spiked ball that most hooked claws can Joints between attackers leave alone. be withdrawn vertebrae are into the foot very strong Long-beaked echidna An echidna can curl up like a hedgehog. It may also dig

itself into the soil, so that only its spines are showing.

Body is long and narrow, perfect for moving through dense forest

Vertebrae have interlocking shapes

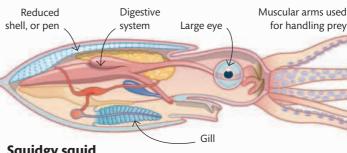
In some large arthropods, such as this land crab, the exoskeleton is reinforced with a chalky substance called calcium carbonate, which makes it extremely hard.

Narrow hips

suited for running and jumping rather than climbing

> Long thigh bones are embedded in some of the tiger's largest muscles

ROOM TO GROW


Unlike the internal skeleton of a vertebrate, the exoskeleton of an arthropod does not grow with the animal, so it has to be shed, or molted, and regrown regularly. This Ecuadorian Brown Velvet Tarantula Spider will be soft and vulnerable for a few hours after molting. It will hide in a safe place and wait for its new, roomier exoskeleton to harden.

eyes. It is made of a light, flexible material called chitin and strengthened with minerals. An exoskeleton gives excellent support and protection, but it limits movement and growth.

MANAGING WITHOUT A SKELETON

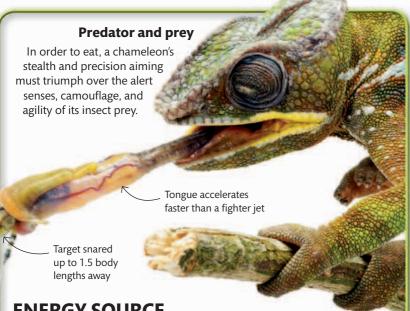
Invertebrates that do not have an external skeleton support their bodies in a variety of ways. Most worms hold their shape by internal liquid pressure (a little like a balloon full of water), while starfish and sea urchins grow a chalky shell immediately under their skin. Many mollusks, including clams and oysters, have a tough chalky or pearly shell. Others, such as squid and octopuses, rely mainly on the support of the water in which they live.

Squidgy squid

A squid has no skeleton, but some squid do possess an internal shell called a pen, which protects the animal's rear. The muscular body relies on the support of seawater, and some species can grow to enormous sizes.

Extendable tentacles used for attack and defense

Ankle joints raised off the ground act as shock absorbers


Tigers walk on four toes on each foot

Long tail aids balance when running and climbing

"A large lobster may molt up to 100 times during its life"

ANIMAL LIFESTYLES

All animals share the same basic characteristics—they are all able to grow, feed, reproduce, move, sense the world around them, and communicate at some level. But the ways in which animals do these things differ enormously, giving rise to a spectacular variety of animal lifestyles and behaviors.

ENERGY SOURCE

Plants get their energy from sunlight, but animals have to obtain the energy they need to live and grow by eating other living things, or their remains. Plant-eating animals are called herbivores, and meat-eaters are carnivores. Tigers and most other carnivores are predators—hunters that kill other animals (known as prey) to get fresh meat. A few carnivores, including vultures, are scavengers; they do not kill but feed on animal remains. The least fussy eaters are omnivores, such as rats; they consume a wide variety of foods.

Tongue-twister

The giraffe, a herbivore, is a browser, meaning that it eats leaves that it plucks from trees. Its flexible tongue can work around even the sharpest thorns. Other herbivores have different feeding habits. Grazers, for example, eat grass, and gramnivores munch seeds.

SENSITIVE CREATURES

Senses are vital to an animal's survival, helping it to avoid danger and to find food or a mate. Like humans, most animals can detect light and touch, have a chemical sense such as taste or smell, and can detect sound waves or other vibrations. Some animals possess extra senses very different from our own, such as the way migrating birds can find their way using the Earth's magnetic field.

Seeing the invisible

Honeybees can detect ultraviolet light, which human eyes are unable to see. Flowers often have ultraviolet markings, invisible to us, that direct bees to their pollen and nectar.

ANATING ANATOMY

Animals come in all shapes and sizes. There are big ones, small ones, hairy ones, and scaly ones. Some are superstrong or ultra tough; others can stick to walls or deliver a nasty bite. Dive in and discover the ones that stand out from the crowd.

STRONGEST MAMMAL BITE

TASMANIAN DEVIL

Although scarcely bigger than a year-old bear cub, the Tasmanian devil has the strongest bite in relation to its size of any mammal. Its jaws can snap bones. It's an efficient scavenger of carrion, capable of eating a whole carcass, fur and all. It occasionally turns into a fearless killer—even attacking venomous snakes.

Bold white chest marking

AT A GLANCE

- **SIZE** Head and body 21–32 in (53–80 cm) long, plus tail 9–12 in (23–30 cm) long
- LOCATION Tasmania
- **DIET** Carrion, living animals, and sometimes plant material

PROTECTIVE MARKINGS

The white chest patch of a Tasmanian Devil is particularly distinctive—although a small number of animals are born without it. The patch may act as a flag to draw aggressive bites from other devils away from the more vulnerable face.

Short legs give a slow, rolling gait

CARCASS COMPETITION

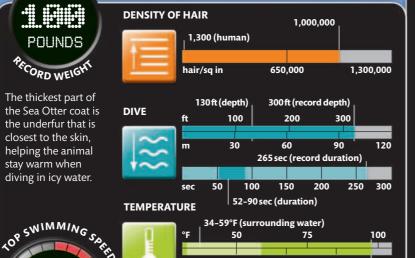
Most Tasmanian Devils are not aggressive unless threatened or competing with another devil for food. When more than one animal is drawn to the same carcass, a noisy squabble might develop, but only rarely does it escalate into a fight. At times like this, growls, snorts, snarls, and screeches can be heard a very long distance away.

WARMEST COAT

SEA OTTER

The coat of a Sea Otter is as cozy as a down comforter. There are more hairs in a square inch of its incredibly thick fur than there are on a whole human head. The Sea Otter certainly needs it. It lives in the cold waters along the north Pacific coastlines, but lacks the layer of fatty blubber under its skin that other sea mammals use as insulation. Instead, it relies on its dense coat to trap warm air close to its body. When floating, it holds its paws above the water to stop them from getting too cold.

AT A GLANCE


Dark fur on body, white

- SIZE Head and body 3¼-4 ft (1-1.2 m) long, plus tail 10-14½ in (25-37 cm) long
- HABITAT Shoreline and shallow ocean waters, within half a mile (1 km) of coast
- **LOCATION** Japan and western coastal North America
- DIET Slow-swimming fish, sea urchins, crabs, and mollusks

STATS AND FACTS

CORD WEIGH

The thickest part of the Sea Otter coat is the underfur that is closest to the skin, helping the animal stay warm when diving in icy water.

98.6°F (body temperature, same as human)

There can be 800 million airs in an adu otter's coat"

TALLEST ANIMAL

GIRAFFE

window without even stretching. A combination of long legs and long neck means the giraffe can not only eat leaves from **The tallest giraffe** could easily look through a second-floor high branches, but it can spot danger farther away, too.

are bony outgrowths

(50 cm) long about 20 in

of the skull

Ligament helps hold

head and

"Every step a

giraffe takes is 15 ft (4.5 m) long"

A HIT TO THE NECK

are strong to support

neavy bones

Neck muscles

knocked unconscious. Male giraffes frequently do and a male might even be battle with one another by around, things may escalate swinging their necks and gentle, but if a female is bashing rivals with their heads. This helps more dominant males keep their authority within the herd. Battles are usually

joints that give ball-and-socket