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ix

        Preface to the Second Edition   

  a scientific book  is an unintentional time capsule. It has no sell-by date, which 
oft en means that readers will evaluate its theories, facts, and evidence, many years aft er 
publication, and do so with the omniscience of hindsight.  Th e Number Sense , a book 
I wrote fi ft een years ago, in my late twenties, is no exception to this rule. 

 I was lucky to start work on  Th e Number Sense  in the early 1990s, at a time when 
number research was in its infancy. A handful of laboratories had only just begun to 
scratch the surface of the fi eld. Some focused on how infants perceived sets of objects. 
Others specialized in the way schoolchildren learn their multiplication tables, or studied 
the bizarre behavior of patients suff ering from brain lesions that disrupted calculation. 
Finally, some, like me, made the fi rst forays into brain imaging research to fi nd out which 
brain areas lit up when students were asked a simple arithmetic question, like, is 6 larger 
than 5? Only a few of us, at the time, could see how all these studies would one day be 
pulled together into a single fi eld, mathematical cognition, with multifaceted techniques 
all aimed at answering Warren McCulloch’s stimulating query: 

  “What is a number, that a man may know it, and a man, that he may know a 
number?”    

  Th e Number Sense  was written with this single goal in mind: to assemble all the avail-
able facts on how the brain does elementary arithmetic, and prove that a new and promis-
ing fi eld of research, ripe with empirical fi ndings, was dawning. I also hoped that it might, 
perhaps, shed light on ancient philosophical disputes that questioned the very nature of 



x  Preface to the Second Edition

mathematics. During the three years that it took me to put together all the diff erent lines 
of research in the fi eld, my enthusiasm increased as I realized how all the pieces of this 
complex puzzle fi tted together into a coherent whole. Animal research on number 
pointed to an age-old competence for processing approximate quantities. Th is “number 
sense,” which is also present in infants, gave humans the intuition of number. Cultural 
inventions, such as the abacus or Arabic numerals, then transformed it into our fully-
fl edged capacity for symbolic mathematics. It was therefore obvious that a careful look at 
the brain structures for the number sense could shed much light on our understanding of 
mathematics. It provided a clear view of how evolution had proceeded, and reconnected 
our human abilities for mathematics to the way monkeys’ and even rats’ and pigeons’ 
brains represent numbers. 

 Since this book was written, some fi ft een years ago, a fl urry of innovative research 
has given this area a stronger impetus that I ever imagined. Mathematical cognition is 
now a well-established domain in cognitive science, and is no longer centered exclusively 
on the concept of number and its origins but has expanded into the related domains of 
algebra and geometry. Several research topics that were merely outlined in  Th e Number 
Sense  have become fully-fl edged areas of research: number sense in animals, brain imag-
ing of numerical computations, the nature of the impairment in children with mathemat-
ical diffi  culties …  One of the most exciting breakthroughs has been the discovery of single 
neurons that code for number in the monkey brain, at a precise site in the parietal lobe 
that appears to be a plausible homolog of the human area that activates when we calcu-
late. Another rapidly developing area has to do with the application of this knowledge to 
education: we are beginning to understand how schooling develops the understanding of 
exact number and arithmetic, and how children who are at risk of developing dyscalculia 
can be helped with very simple games and soft ware. 

 When I reread the fi rst edition of this book, I was pleased to see that all of these ideas 
were already germinating, albeit somewhat speculatively, fi ft een years ago. Now that 
research fi ndings have solidly grounded them, I am convinced that a new edition of 
 Th e Number Sense  is in order. To be sure, several excellent books had been published 
since 1997, among them Brian Butterworth’s  Mathematical Brain  (1999), Rafael Núñez 
and George Lakoff ’s  Where Mathematics Comes From  (2000), and Jamie Campbell’s 
edited  Handbook of Mathematical Cognition  (2004). But none of them captures the full 
range of what we understand today about number and the brain. 

 I am grateful to my agents, Max and John Brockman, and to my editors, Abby Gross 
and Odile Jacob, for encouraging me to embark on this new version and for helping me 
to decide what form it should take. We quickly agreed that to rewrite the past would be 
awkward or even presumptuous. It seemed important to give the reader an appropriate 
sense of how the fi eld came into being twenty years ago, what motivated our current 
hypotheses, and how experimental methods had evolved since then, either to fl esh out 
our theories — or, occasionally, but fortunately not too oft en, to refute them. Th us, 
we conceived a second edition that would leave the original untouched but would 
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 supplement it with new references and, above all, a long, new, fi nal chapter outlining the 
most outstanding discoveries that have been made since the fi rst edition appeared. 
Selecting the fi ndings that belonged in this chapter was an arduous task, since the fi eld 
has literally exploded in the last fi ft een years. Indeed, there are now hundreds of scientifi c 
fi ndings that would have been relevant. Nevertheless, I decided to stick to a small list 
of surprising facts that, I believe, illuminate what arithmetic is at the brain level, and 
therefore how we should teach it. 

 Most mathematicians, overtly or covertly, are Platonists. Th ey picture themselves as 
explorers of a continent of ideas independent of the human mind, older than life and 
immanent in the very structure of the Universe. In his treatise on  Th e Nature and Meaning 
of Numbers , the great mathematician Richard Dedekind, however, thought otherwise. 
Numbers, he said, are “free creations of the human mind,” “an immediate emanation from 
the pure laws of thought.” I could not agree more — but then the burden of elucidation 
clearly falls upon psychologists and neuroscientists, who will have to fi gure out how 
a fi nite brain, a mere collection of nerve cells, can conceive such abstract thoughts. 
Th e present book should be considered as a modest contribution to this fascinating 
question. 

 S.D. 
 Palaiseau, France 

 July 2010    
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        Preface to the First Edition   

  we are surrounded  by numbers. Etched on credit cards or engraved on coins, 
printed on pay checks or aligned on computerized spread sheets, numbers rule our lives. 
Indeed, they lie at the heart of our technology. Without numbers, we could not send 
rockets roaming the solar system, nor could we build bridges, exchange goods, or pay our 
bills. In some sense, then, numbers are cultural inventions only comparable in impor-
tance to agriculture or to the wheel. But they might have even deeper roots. Th ousands 
of years before Christ, Babylonian scientists used clever numerical notations to compute 
astronomical tables of amazing accuracy. Tens of thousands of years prior to them, 
Neolithic men recorded the fi rst written numerals by engraving bones or by painting 
dots on cave walls. And, as I shall try to convince you later on, millions of years earlier 
still, long before the dawn of humankind, animals of all species were already registering 
numbers and entering them into simple mental computations. Might numbers, then, 
be almost as old as life itself ? Might they be engraved in the very architecture of our 
brains? Do we all possess a “number sense,” a special intuition that helps us make sense 
of numbers and mathematics? 

 Around the age of sixteen, as I was training to become a mathematician, I became 
fascinated by the abstract objects I was taught to manipulate, and above all by the sim-
plest of them — numbers. Where did they come from? How was it possible for my brain 
to understand them? Why did it seem so diffi  cult for most people to master them? 
Historians of science and philosophers of mathematics had provided some tentative 
answers, but to a scientifi cally oriented mind their speculative and contingent character was 
unsatisfactory Furthermore, scores of intriguing facts about numbers and mathematics 
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were left  unanswered in the books I knew of. Why did all languages have at least some 
number names? Why did everybody seem to fi nd multiplications by seven, eight, or 
nine particularly hard to learn? Why couldn’t I seem to recognize more than four objects 
at a glance? Why were there ten boys for one girl in the high-level mathematics classes 
I was attending? What tricks allowed lightning calculators to multiply two three-digit 
numbers in a few seconds? 

 As I learned increasingly more about psychology, neurophysiology, and computer 
science, it became obvious that the answers had to be looked for, not in history books, 
but in the very structure of our brains — the organ that enables us to create mathematics. 
It was an exciting time for a mathematician to turn to cognitive neuroscience. New exper-
imental techniques and amazing results seemed to appear every month. Some revealed 
that animals could do simple arithmetic. Others asked whether babies had any notion 
of 1 plus 1. Functional imaging tools were also becoming available that could visualize 
the active circuits of the human brain as it calculates and solves arithmetical problems. 
Suddenly, the psychological and cerebral bases of our number sense were open to experi-
mentation. A new fi eld of science was emerging: mathematical cognition, or the scien-
tifi c inquiry into how the human brain gives rise to mathematics. I was lucky enough to 
become an active participant in this quest. Th is book provides a fi rst glance at this new 
fi eld of research that my colleagues in Paris, and several research teams throughout the 
world, are still busy developing. 

 I am indebted to many people for helping me complete the transition from mathemat-
ics to neuropsychology. First and foremost, my research program on arithmetic and the 
brain could never have developed without the generous assistance of three outstanding 
teachers, colleagues, and friends who deserve very special thanks: Jean-Pierre Changeux 
in neurobiology, Laurent Cohen in neuropsychology, and Jacques Mehler in cognitive 
psychology. Th eir support, advice, and oft en direct contribution to the work described 
here have been of invaluable help. 

 I would like to acknowledge my many research companions of the past two decades, and 
particularly the crucial contribution of the many students and post-docs, many of whom 
became essential collaborators and, quite simply, friends that count: Rokny Akhavein, Serge 
Bossini, Marie Bruandet, Antoine Del Cul, Raphaël Gaillard, Pascal Giraux, Ed Hubbard, 
Véronique Izard, Markus Kiefer, André Knops, Étienne Kœchlin, Sid Kouider, Gurvan 
Leclec’H, Cathy Lemer, Koleen McCrink, Nicolas Molko, Lionel Naccache, Manuela 
Piazza, Philippe Pinel, Maria-Grazia Ranzini, Susannah Revkin, Gérard Rozsavolgyi, Elena 
Rusconi, Mariano Sigman, Olivier Simon, Arnaud Viarouge, and Anna Wilson. 

 For the fi rst edition of this book, I also benefi ted from the advice of many other emi-
nent scientists. Mike Posner, Don Tucker, Michael Murias, Denis Le Bihan, André Syrota, 
and Bernard Mazoyer shared with me their in-depth knowledge of brain imaging. 
Emmanuel Dupoux, Anne Christophe, and Christophe Pallier advised me in psycholin-
guistics. I am also grateful for ground-shaking debates with Rochel Gelman and Randy 
Gallistel, and for judicious remarks by Karen Wynn, Sue Carey, and Josiane Bertoncini 
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on child development. Th e late professor Jean-Louis Signoret had introduced me to the 
fascinating domain of neuropsychology. Subsequently, numerous discussions with 
Alfonso Caramazza, Michael McCloskey, Brian Butterworth, and Xavier Seron greatly 
enhanced my understanding of this discipline. Xavier Jeannin and Michel Dutat, fi nally, 
assisted me in programming my experiments. 

 For this second edition, many additional collaborators, in France and abroad, helped 
me progress in my research: Hillary Barth, Eliza Block, Jessica Cantlon, Laurent Cohen 
Jean-Pierre Changeux, Evelyn Eger, Lisa Feigenson, Guillaume Flandin, Tony Greenwald, 
Marc Hauser, Antoinette Jobert, Ferath Kherif, Andrea Patalano, Lucie Hertz-Pannier, 
Karen Kopera-Frye, Denis Le Bihan, Stéphane Lehéricy, Jean-François Mangin, 
J. Frederico Marques, Jean-Baptiste Poline, Denis Rivière, Jérôme Sackur, Elizabeth Spelke, 
Ann Streissguth, Bertrand Th irion, Pierre-François van de Moortele, and Marco Zorzi. 
I also gratefully acknowledge all the colleagues who, across the years and the oceans, through 
relentless discussions, helped me sharpen my thoughts and correct my errors. An exhaustive 
list is impossible, but my thoughts go fi rst and foremost to Elizabeth Brannon, Wim Fias, 
Randy Gallistel, Rochel Gelman, Usha Goswami, Nancy Kanwisher, Andreas Nieder, 
Michael Posner, Bruce McCandliss, Sally and Bennett Shaywitz, and Herb Terrace. 

 My research on numerical cognition received a massive boost when I received a 
ten-year Centennial Fellowship grant from the McDonnell Foundation, which played 
an essential role in my career. It was also supported by INSERM (French Institute for 
Health and Medical Research, CEA (Atomic Energy Commission), Collège de France, 
Paris XI University, the Fyssen foundation, the Bettencourt-Schueller Foundation, the 
Volkswagen foundation, the Louis D. Foundation of the Institut de France, and the French 
Foundation for Medical Research. Th e preparation of this book greatly benefi ted from the 
close scrutiny of Brian Butterworth, Robbie Case, Markus Giaquinto, and Susana Franck 
for the English edition, and of Jean-Pierre Changeux, Laurent Cohen, Ghislaine Dehaene-
Lambertz and Gérard Jorland for the French edition. Warm thanks go also to Joan Bossert 
and Abby Gross, my editors at Oxford University Press, John Brockman, my agent, and 
Odile Jacob, my French editor. Th eir trust and support was very precious. 

 I would also like to thank the publishers and authors who kindly granted me the 
permission to reproduce the fi gures and quotes used in this book. Special thanks go 
to Gianfranco Denes for drawing my attention to the remarkable section of Ionesco’s 
 Lesson  that is cited in Chapter 8. 

 Last but not least, a word of thanks cannot suffi  ce to express my feelings for my family, 
Ghislaine, Oliver, David, and Guillaume, who patiently supported me during the long 
months spent exploring and writing about the universe of numbers. Th is book is dedi-
cated to them. 

 S.D. 
 Piriac, France 
 August 1996    
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        Introduction    

   as i first  sat down to write this book, I was faced with a ridiculous problem of arith-
metic: If this book is to have 250 pages and nine main chapters, how many pages will each 
chapter have? Aft er thinking hard, I came to the conclusion that each should have slightly 
fewer than 30 pages. Th is took me about fi ve seconds, not bad for a human, yet an eternity 
compared to the speed of any electronic calculator. Not only did my calculator respond 
instantaneously, but the result it gave was accurate to the tenth decimal: 27.7777777778! 

 Why is our capacity for mental calculation so inferior to that of computers? And 
how do we reach excellent approximations such as “slightly fewer than 30” without 
resorting to an exact calculation, something that is beyond the best of electronic calcula-
tors? Th e resolution of these nagging questions, which is the subject matter of this book, 
will confront us with even more challenging riddles:  

    •    Why is it that aft er so many years of training, the majority of us still do not know 
for sure whether 7 times 8 is 54 or 64 …  or is it 56?  

    •    Why is our mathematical knowledge so vulnerable that a small cerebral lesion is 
enough to abolish our sense of numbers?  

    •    How can a 5-month-old baby know that 1 plus 1 equals 2?  
    •    How is it possible for animals without language, such as chimpanzees, rats, and 

pigeons, to have some knowledge of elementary arithmetic?     

 My hypothesis is that the answers to all these questions must be sought at a single source: 
the structure of our brain. Every single thought we entertain, every calculation we 

Any poet, even the most allergic to 

mathematics, has to count up to twelve 

in order to compose an alexandrine.

raymond queneau
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perform, results from the activation of specialized neuronal circuits implanted in our 
cerebral cortex. Our abstract mathematical constructions originate in the coherent 
activity of our cerebral circuits, and of the millions of other brains preceding us that 
helped shape and select our current mathematical tools. Can we begin to understand the 
constraints that our neural architecture imposes on our mathematical activities? 

 Evolution, ever since Darwin, has remained the reference for biologists. In the case of 
mathematics, both biological and cultural evolution matter. Mathematics is not a static 
and God-given ideal, but an ever-changing fi eld of human research. Even our digital 
notation of numbers, as obvious as it may seem now, is the fruit of a slow process 
of  invention over thousands of years. Th e same holds for the current multiplication 
algorithm, the concept of square root, the sets of real, imaginary, or complex numbers, 
and so on. All still bear scars of their diffi  cult and recent birth. 

 Th e slow cultural evolution of mathematical objects is a product of a very special 
biological organ, the brain, that itself represents the outcome of an even slower biologi-
cal evolution governed by the principles of natural selection. Th e same selective pressures 
that have shaped the delicate mechanisms of the eye, the profi le of the hummingbird’s 
wing, or the minuscule robotics of the ant, have also shaped the human brain. From year 
to year, species aft er species, ever more specialized mental organs have blossomed within 
the brain to better process the enormous fl ux of sensory information received, and to 
adapt the organism’s reactions to a competitive or even hostile environment. 

 One of the brain’s specialized mental organs is a primitive number processor that pre-
fi gures, without quite matching it, the arithmetic that is taught in our schools. Improbable 
as it may seem, numerous animal species that we consider stupid or vicious, such as rats 
and pigeons, are actually quite gift ed at calculation. Th ey can represent  quantities men-
tally and transform them according to some of the rules of arithmetic. Th e scientists who 
have studied these abilities believe that animals possess a mental module, traditionally 
called the “accumulator,” that can hold a register of various  quantities. We shall see later 
how rats exploit this mental accumulator to distinguish series of two, three, or four 
sounds, or to compute approximate additions of two quantities. Th e accumulator mecha-
nism opens up a new dimension of sensory perception through which the cardinal of a set 
of objects can be perceived just as easily as their color, shape, or position. Th is “number 
sense” provides animals and humans alike with a direct intuition of what numbers mean. 

 Tobias Dantzig, in his book exalting “number, the language of science,” underlined the 
primacy of this elementary form of numerical intuition: “Man, even in the lower stages of 
development, possesses a faculty which, for want of a better name, I shall call  Number 
Sense.  Th is faculty permits him to recognize that something has changed in a small 
 collection when, without his direct knowledge, an object has been removed or added 
to the collection.”   1  

1  Dantzig, 1967. 
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 Dantzig wrote these words in 1954, when psychology was dominated by Jean Piaget’s 
theory, which denied young children any numerical abilities. It took twenty more years 
before Piagetian constructivism was defi nitely refuted and Dantzig’s insight was con-
fi rmed. All people possess, even within their fi rst year of life, a well-developed intuition 
about numbers. Later, we consider in some detail the ingenious experiments which dem-
onstrate that human babies, far from being helpless, already know right from birth some 
fragments of arithmetic comparable to the animal knowledge of number. Elementary 
additions and subtractions are already available to 6-month-old babies! 

 Let there be no misunderstanding. Obviously, only the adult  Homo sapiens  brain has 
the power to recognize that 37 is a prime number, or to calculate approximations of the 
number  π  .  Indeed, such feats remain the privilege of only a few humans in a few cultures. 
Th e baby brain and  a fortiori  the animal brain, far from exhibiting our mathematical 
fl exibility, work their minor arithmetical miracles only within quite limited contexts. 
In particular, their accumulator cannot handle discrete quantities, but only continuous 
estimates. Pigeons will never be able to distinguish 49 from 50, because they cannot 
represent these quantities other than in an approximate and variable fashion. For an 
animal, 5 plus 5 does not make 10, but only  about 10:  maybe 9, 10, or 11. Such poor 
numerical acuity, such fuzziness in the internal vision of numbers, prevents the emer-
gence of exact arithmetical knowledge in animals. By the very structure of their brains, 
they are condemned to an approximate arithmetic. 

 Humans, however, have been endowed by evolution with a supplementary compe-
tence: the ability to create complex symbol systems, including spoken and written 
language. Words or symbols, because they can separate concepts with arbitrarily close 
meanings, allow us to move beyond the limits of approximation. Language allows us 
to label infi nitely many diff erent numbers. Th ese labels, the most evolved of which are 
the Arabic numerals, can symbolize and discretize any continuous quantity. Th anks to 
them, numbers that may be close in quantity, but whose arithmetical properties are very 
diff erent, can be distinguished. Only then can the invention of purely formal rules for 
comparing, adding, or dividing two numbers be conceived. Indeed, numbers acquire a 
life of their own, devoid of any direct reference to concrete sets of objects. Th e scaff olding 
of mathematics can then rise, ever higher, ever more abstract. 

 Th is raises a paradox, however. Our brains have remained essentially unchanged since 
 Homo sapiens  fi rst appeared 100,000 years ago. Our genes, indeed, are condemned to a 
slow and minute evolution, dependent on the occurrence of chance mutations. It takes 
thousands of aborted attempts before a favorable mutation, one worthy of being passed 
on to coming generations, emerges from the noise. In contrast, cultures evolve through a 
much faster process. Ideas, inventions, progress of all kinds, can spread to an entire popu-
lation through language and education as soon as they have germinated in some fertile 
mind. Th is is how mathematics, as we know it today, has emerged in only a few thousand 
years. Th e concept of number, hinted at by the Babylonians, refi ned by the Greeks, puri-
fi ed by the Indians and the Arabs, axiomatized by Dedekind and Peano, generalized by 
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Galois, has never ceased to evolve from culture to culture — obviously, without requiring 
any modifi cation of the mathematician’s genetic material! In a fi rst approximation, 
Einstein’s brain is no diff erent from that of the master who, in the Magdalenian, painted 
the Lascaux cave. At elementary school, our children learn modern mathematics with a 
brain initially designed for survival in the African savanna. 

 How can we reconcile such biological inertia with the lightning speed of cultural 
evolution? Th anks to extraordinary modern tools, such as positron emission tomography 
or functional magnetic resonance imaging, the cerebral circuits that underlie language, 
problem solving, and mental calculation can now be imaged in the living human brain. 
We will see that when our brain is confronted with a task for which it was not prepared 
by evolution, such as multiplying two digits, it recruits a vast network of cerebral areas 
whose initial functions are quite diff erent, but which may, together, reach the desired 
goal. Aside from the approximate accumulator that we share with rats and pigeons, our 
brain probably does not contain any “arithmetical unit” predestined for numbers and 
math. It compensates this shortcoming, however, by tinkering with alternative circuits 
that may be slow and indirect, but are more or less functional for the task at hand. 

 Cultural objects — for instance, written words or numbers — may thus be considered 
as parasites that invade cerebral systems initially destined to a quite diff erent use. 
Occasionally, as in the case of word reading, the parasite can be so intrusive as to 
completely replace the previous function of a given brain area with its own. Th us, some 
brain areas that, in other primates, seem to be dedicated to the recognition of visual 
objects acquire in the literate human a specialized and irreplaceable role in the identifi ca-
tion of letter and digit strings. 

 One cannot but marvel at the fl exibility of a brain that can, depending on context and 
epoch, plan a mammoth hunt or conceive of a demonstration of Fermat’s last theorem. 
However, this fl exibility should not be overestimated. Indeed, my contention is that it 
is precisely the assets and the limits of our cerebral circuits that determine the strong 
and weak points of our mathematical abilities. Our brain, like that of the rat, has been 
endowed since time immemorial with an intuitive representation of quantities. Th is 
is why we are so gift ed for approximation, and why it seems so obvious to us that 10 is 
larger than 5. Conversely, our memory, unlike that of the computer, is not digital but 
works by association of ideas. Th is is probably the reason why we have such a hard time 
remembering the small number of equations that make up the multiplication table. 

 Just as the budding mathematician’s brain thus lends itself more or less easily to the 
requirements of mathematics, mathematical objects also evolve to match our cerebral 
constraints increasingly well. Th e history of mathematics provides ample evidence that 
our concepts of number, far from being frozen, are in constant evolution. Mathematicians 
have worked hard for centuries to improve the usefulness of numerical notations by 
increasing their generality, their fi elds of application, and their formal simplicity. In doing 
so, they have unwittingly invented ways of making them fi t the constraints of our cerebral 
organization. Th ough a few years of education now suffi  ce for a child to learn digital 
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notation, we should not forget that it took centuries to perfect this system before it 
became child’s play. Some mathematical objects now seem very intuitive only because 
their structure is well adapted to our brain architecture. On the other hand, a great many 
children fi nd fractions very diffi  cult to learn because their cortical machinery resists 
such a counterintuitive concept. 

 If the basic architecture of our brain imposes such strong limits on our understanding 
of arithmetic, why do a few children thrive on mathematics? How have outstanding 
mathematicians such as Gauss, Einstein, or Ramanujan attained such extraordinary 
familiarity with mathematical objects? And how do some idiot savants with an IQ of 
50 manage to become experts in mental calculation? Do we have to suppose that some 
people started in life with a particular brain architecture, or a biological predisposition 
to become geniuses? A careful examination of this supposition will show us that this is 
unlikely. At present, at any rate, very little evidence exists that great mathematicians and 
calculating prodigies have been endowed with an exceptional neurobiological  structure. 
Like the rest of us, experts in arithmetic have to struggle with long calculations and 
abstruse mathematical concepts. If they succeed, it is only because they devote a consider-
able time to this topic and eventually invent well-tuned algorithms and clever shortcuts 
that any of us could learn if we tried, and that are carefully devised to take advantage of 
our brain’s assets and get round its limits. What is special about them is their dispropor-
tionate and relentless passion for numbers and mathematics, occasionally fueled by their 
inability to entertain normal relations with other fellow humans, a cerebral disease called 
 autism . I am convinced that children of equal initial abilities may become excellent or 
hopeless at mathematics depending on their love or hatred of the subject. Passion breeds 
talent — and parents and teachers, therefore, have a considerable responsibility in devel-
oping their children’s positive or negative attitudes toward mathematics. 

 In  Gulliver’s Travels,  Jonathan Swift  describes the bizarre teaching methods used at the 
mathematics school of Lagado, in Balnibarbi Island: 

 I was at the mathematical school, where the master taught his pupils aft er a method 
scarcely imaginable to us in Europe. Th e proposition and demonstration were fairly 
written on a thin wafer, with ink composed of a cephalic tincture. Th is the student 
was to swallow upon a fasting stomach, and for three days following eat nothing but 
bread and water. As the wafer digested, the tincture mounted to his brain, bearing 
the proposition along with it. But the success hath not hitherto been answerable, 
partly by some error in the  quantum  or composition, and partly by the perverseness 
of lads, to whom this bolus is so nauseous, that they generally steal aside, and 
discharge it upwards before it can operate; neither have they been yet persuaded to 
use so long an abstinence as the prescription requires.   

 Although Swift ’s description reaches the height of absurdity, his basic metaphor of 
learning mathematics as a process of assimilation has an undeniable truth. In the fi nal 



xxii  Introduction

analysis, all mathematical knowledge is incorporated into the biological tissues of the 
brain. Every single mathematics course that our children take is made possible by 
the modifi cations of millions of their synapses, implying widespread gene expression and 
the formation of billions of molecules of neurotransmitters and receptors, with modula-
tion by chemical signals refl ecting the child’s level of attention and emotional involve-
ment in the topic. Yet the neuronal networks of our brains are not perfectly fl exible. 
Th e very structure of our brain makes certain arithmetical concepts easier to “digest” 
than others. 

 I hope that the views I am defending here will eventually lead to improvements in 
teaching mathematics. A good curriculum would take into account the assets and limits 
of the learner’s cerebral structure. To optimize the learning experiences of our children, 
we should consider what impact education and brain maturation have on the organiza-
tion of mental representations. Obviously, we are still far from understanding to what 
extent learning can modify our brain machinery. Th e little that we already know could be 
of some use, however. Th e fascinating results that cognitive scientists have accumulated 
for the last twenty years on how our brain does math have not, until now, been made 
public and allowed to percolate through to the world of education. I would be delighted 
if this book served as a catalyst for improved communication between the cognitive and 
education sciences. 

 Th is book will take you on a tour of arithmetic as seen from the eyes of a biologist, but 
without neglecting its cultural components. In Chapters 1 and 2, through an initial visit 
of animals’ and human infants’ abilities for arithmetic, I shall try to convince you that our 
mathematical abilities are not without biological precursors. Indeed, in Chapter 3 we 
shall fi nd many traces of the animal mode of processing numbers still at work in adult 
human behavior. In Chapters 4 and 5, by observing how children learn to count and to 
calculate, we shall then attempt to understand how this initial approximate system can 
be overcome, and the diffi  culties that the acquisition of advanced mathematics raises 
for our primate brain. Th is will be a good occasion to investigate current methods of 
mathematical teaching and to examine the extent to which they have naturally adapted to 
our mental architecture. In Chapter 6 we shall also try to sort out the characteristics that 
distinguish a young Einstein or a calculating prodigy from the rest of us. In Chapters 7 
and 8, fi nally, our number hunt will end up in the fi ssures of the cerebral cortex, where the 
neuronal circuits that support calculation are located, and from which, alas, they can be 
dislodged by a lesion or a vascular accident, thus depriving otherwise normal persons of 
their number sense.                
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 books on natural history have recounted the following anecdote since the eigh-
teenth century: 

 A nobleman wanted to shoot down a crow that had built its nest atop a tower on his 
domain. However, whenever he approached the tower, the bird fl ew out of gun 
range and waited until the man departed. As soon as he left , it returned to its nest. 
Th e man decided to ask a neighbor for help. Th e two hunters entered the tower 
together, and later only one of them came out. But the crow did not fall into this 
trap, and carefully waited for the second man to come out before returning. Neither 
did three, then four, then fi ve men fool the clever bird. Each time, the crow would 
wait until all the hunters had departed. Eventually, the hunters came as a party 
of six. When fi ve of them had left  the tower, the bird, not so numerate aft er all, 
confi dently came back, and was shot down by the sixth hunter.   

 Is this anecdote authentic? Nobody knows. It is not even clear that it has anything to 
do with numerical competence: For all we know, the bird could have memorized the 
visual appearance of each hunter rather than their number. Nevertheless, I decided to 
highlight it because it provides a splendid illustration of many aspects of animal arith-
metic that are the subject of this chapter. First, in many tightly controlled experiments, 
birds and many other animal species appear to be able to perceive numerical quantities 
without requiring special training. Second, this perception is not perfectly accurate, and 
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its accuracy decreases with increasingly larger numbers; hence the bird confounding 5 
and 6. Finally, and more facetiously, the anecdote shows how the forces of Darwinian 
selection also apply to the arithmetical domain. If the bird had been able to count up 
to 6, perhaps it would never have been shot! In numerous species, estimating the number 
and ferocity of predators, or quantifying and comparing the return of two sources of 
food, are matters of life and death. Such evolutionary arguments should help make sense 
of the many scientifi c experiments that have revealed sophisticated procedures for 
 numerical calculation in animals.     

   A Horse Named Hans   

 At the beginning of this century, a horse named Hans made it to the headlines of German 
newspapers.   1  His master, Wilhelm von Osten, was no ordinary circus animal trainer. 
Rather, he was a passionate man who, under the infl uence of Darwin’s ideas, had set out 
to demonstrate the extent of animal intelligence. He wound up spending more than a 
decade teaching his horse arithmetic, reading, and music. Although the results were slow 
to come, they eventually exceeded all his expectations. Th e horse seemed gift ed with a 
superior intelligence. It could apparently solve arithmetical problems and even spell out 
words! 

 Demonstrations of Clever Hans’s abilities oft en took place in von Osten’s yard. Th e 
public would form a half-circle around the animal and suggest an arithmetical question 
to the trainer — for instance, “How much is 5 plus 3?” Von Osten would then present the 
animal with fi ve objects aligned on a table, and with three other objects on another table. 
Aft er examining the “problem,” the horse responded by knocking on the ground with its 
hoof the number of times equal to the total of the addition. However, Hans’s mathe-
matical abilities far exceeded this simple feat. Some arithmetical problems were spoken 
aloud by the public, or were written in digital notation on a blackboard, and Hans could 
solve them just as easily (Figure   1.1  ). Th e horse could also add two fractions such as 2/5 
and 1/2 and give the answer 9/10 by striking nine times, then ten times with its hoof. It 
was even said that to the question of determining the divisors of 28, Hans came out very 
appropriately with the answers 2, 4, 7, 14, and 28. Obviously, Hans’s number knowledge 
surpassed by far what an elementary school teacher would expect today of a reasonably 
bright pupil! 

  In September 1904, a committee of experts, among whom fi gured the eminent German 
psychologist Carl Stumpf, concluded aft er an extensive investigation that Hans’s feats 
were real and not a result of cheating. Th is generous conclusion, however, did not satisfy 
Oskar Pfungst, one of Stumpf ’s own students. With von Osten’s help — the master was 

1  Fernald,     1984   
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fully convinced of his prodigy’s superior intelligence — he began a systematic study of the 
horse’s abilities. Pfungst’s experiments, even by today’s standards, remain a model of rigor 
and inventiveness. His working hypothesis was that the horse could not but be totally 
inept in mathematics. Th erefore, it had to be the master himself, or someone in the public, 
who knew the answer and sent the animal a hidden signal when the target number of 
strokes had been reached, thus commanding the animal to stop knocking with its hoof. 

 To prove this, Pfungst invented a way of dissociating Hans’s knowledge of a problem 
from what its master knew. He used a procedure that diff ered only slightly from the one 
described above. Th e master watched carefully as a simple addition was written in large 
printed characters on a panel. Th e panel was then oriented toward the horse in such a way 
that only it could see the problem and answer it. However, on some trials, Pfungst surrep-
titiously modifi ed the addition before showing it to the horse. For instance, the master 
could see 6  +  2, whereas in fact the horse was trying to solve 6  +  3. 

 Th e results of this experiment, and of a series of follow-up controls, were clear-cut. 
Whenever the master knew the correct response, Hans got the right answer. When, on 
the contrary, the master was not aware of the solution, the horse failed. Moreover, the 
horse oft en produced an error that matched the numerical result expected by its master. 
Obviously, it was von Osten himself, rather than Hans, who was fi nding the solution to 
the various arithmetical problems. But how then did the horse know how to respond? 
Pfungst eventually deduced that Hans’s truly amazing ability lay in detecting minuscule 
movements of its master’s head or eyebrows that invariably announced the time to 
stop the series of knocks. In fact, Pfungst never doubted that the trainer was sincere. 

      figure 1.1.  Clever Hans and his master Wilhelm von Osten strike a pose in front of an impressive 
array of arithmetic problems. Th e larger blackboard shows the numerical coding the horse used to 
spell words.    
 (Copyright  ©  Bildarchiv Preussicher Kulturbesitz.)     
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He believed that the signals were completely unconscious and involuntary. Even when 
von Osten was absent, the horse continued to respond correctly: Apparently, it detected 
the buildup of tension in the public as the expected number of hoof strokes was attained. 
Pfungst himself could never eliminate all forms of involuntary communication with the 
animal, even aft er he discovered the exact nature of the body clues it used. 

 Pfungst’s experiments largely discredited demonstrations of “animal intelligence” and 
the competence of self-proclaimed experts such as Stumpf who had blindly subscribed to 
them. Indeed, the “Clever Hans phenomenon” is still taught in psychology classes today. 
It remains a symbol of the pernicious infl uence that experimenter expectations and inter-
ventions, however small, may have on the outcome of any psychological experiment with 
humans or with animals. Historically, Hans’s story has played a crucial role in shaping the 
critical minds of psychologists and ethologists. It has drawn attention to the necessity for 
a rigorous experimental design. Since an essentially invisible stimulation, as brief as the 
blink of an eye, can infl uence the performance of animals, a well-designed experiment has 
to be devoid from the start of any possible source of errors. Th is lesson was particularly 
well received by behaviorists, such as B. F. Skinner, who dedicated a large amount of 
work to the development of rigorous experimental paradigms for the study of animal 
behavior. 

 Unfortunately, Hans’s exemplary case has also had more negative consequences on the 
development of psychological science. It has imposed an aura of suspicion onto the whole 
area of research on the representation of numbers in animals. Ironically, scientists now 
meet every single demonstration of numerical competence in animals with the same 
raised eyebrows that served as a cue to Hans! Such experiments are immediately associ-
ated, consciously or not, with Hans’s story, and are therefore suspected of a basic fl aw in 
design, if not downright forgery. Th is is an irrational prejudice, however. Pfungst’s exper-
iments showed only that Hans’s numerical abilities were a fl uke. By no means did they 
prove that it is impossible for an animal to understand some aspects of arithmetic. For a 
long time, however, the scientist’s attitude was to systematically look for some experimen-
tal bias that might explain animal behavior without resorting to the hypothesis that 
 animals have even an embryonic knowledge of calculation. For a while, even the most 
convincing results failed to convince anyone. Some researchers even preferred to attri-
bute to animals mysterious abilities such as a “rhythm discrimination” faculty, for instance, 
rather than admit that animals could enumerate a collection of objects. In brief, the 
 scientifi c community tended to throw out the baby with the bath water. 

 Before turning to some of the experiments that fi nally convinced all but the most 
 skeptical of researchers, I would like to conclude Hans’s story with a modern anecdote. 
Even today, the training of circus animals rests on methods rather similar to Hans’s trick. 
If you ever see a show in which an animal adds numbers, spells words, or some surprising 
deed of this kind, you may safely bet that its behavior rests, like Hans’s, on a hidden com-
munication with its human trainer. Let me stress again that such communication need 
not be intentional. Th e trainer is oft en sincerely convinced of his pupil’s gift s. A few years 
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ago, I came upon an amusing article in a local Swiss newspaper. A journalist had visited 
the home of Gilles and Caroline P., whose poodle, named Poupette, seemed extraordi-
narily gift ed in mathematics. Figure   1.2   shows Poupette’s proud owner presenting his 
faithful and brilliant companion with a series of written digits that it was supposed to 
add. Poupette responded without ever making an error by tapping on its master’s hand 
with its paw the exact number of times required, and then licking the hand aft er the 
 correct count had been reached. According to its master, the canine prodigy had required 
only a brief training period, which led him to believe in reincarnation or some similar 
paranormal phenomenon. Th e journalist, however, wisely noted that the dog could react 
to subtle cues from the master’s eyelids, or to some tiny motions of his hand when the 
correct count was reached. So this was indeed a case of reincarnation aft er all: the reincar-
nation of Clever Hans’s stratagem, of which Poupette’s story constituted, a century later, 
an astonishing replication.      

   Rat Accountants   

 Following the Hans episode, several renowned American laboratories developed research 
programs on animal mathematical abilities. Many such projects failed. A famous German 
ethologist named Otto Koehler, however, was more successful.   2  One of his trained crows, 
Jacob, apparently learned to choose, among several containers, the one whose lid bore a 
fi xed number of fi ve points. Because the size, the shape, and the location of the points 
varied randomly from trial to trial, only an accurate perception of the number 5 could 

2  Koehler,     1951   

      figure 1.2.  A modern canine “clever Hans”: Poupette, the dog that could supposedly add digits.     
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account for this performance. Nevertheless, the results achieved by Koehler’s team had 
little impact, partly because most of their results were published only in German, and 
partly because Koehler failed to convince his colleagues that all possible sources of error, 
such as unintentional experimenter communication, olfactory cues or the like, had been 
excluded. 

 In the 1950s and 1960s, Francis Mechner, an animal psychologist at Columbia 
University, followed by John Platt and David Johnson at the University of Iowa, intro-
duced a very convincing experimental paradigm that I shall schematically describe here.   3  
A rat that had been temporarily deprived of food was placed in a closed box with two 
levers, A and B. Lever B was connected to a mechanical device that delivered a small 
amount of food. However, this reward system did not work at once. Th e rat fi rst had 
to repeatedly press lever A. Only aft er it had pressed for a fi xed number of times  n  on 
lever A could it switch to lever B and get its deserved treat. If the rat switched too early to 
lever B, not only did it fail to get any food, but it received a penalty. On diff erent experi-
ments, the light could go off  for a few seconds, or the counter was reset so that the rat had 
to start all over again with a new series of  n  presses on lever A. 

 How did rats behave in this rather unusual environment? Th ey initially discovered, by 
trial and error, that food would appear when they pressed several times on lever A, and 
then once on lever B. Progressively, the number of times that they had to press was 
 estimated more and more accurately Eventually, at the end of the learning period, the 
rats behaved very rationally in relation to the number  n  that had been selected by the 
experimenter. Th e rats that had to press four times on lever A, before lever B would deliver 
food, did press it about four times. Th ose that were placed in the situation where eight 
presses were required waited until they had produced about eight squeezes, and so on 
(see Figure   1.3  ). Even when the requisite number was as high as twelve or sixteen, those 
clever rat accountants continued to keep their registers up to date!  

 Two details are worth mentioning. First, the rats oft en squeezed lever A a little more 
than the minimum required — fi ve times instead of four, for instance. Again, this was an 
eminently rational strategy. Since they received a penalty for switching prematurely to 
lever B, the rats preferred to play it safe and press lever A once more, rather than once less. 
Second, even aft er considerable training, the rats’ behavior remained rather imprecise. 
Where the optimal strategy would have been to press lever A exactly four times, the rats 
oft en pressed it four, fi ve, or six times, and on some trials they squeezed it three or even 
seven times. Th eir behavior was defi nitely not “digital,” and variation was considerable 
from trial to trial. Indeed, this variability increased in direct proportion to the target 
number that the rats estimated. When the target number of presses was four, the rats’ 
responses ranged from three to seven presses, but when the target was sixteen, the 
responses went from twelve to twenty-four, thus covering a much larger interval. Th e rats 

3  Mechner,     1958  ; Platt & Johnson,     1971   
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appeared to be equipped with a rather imprecise estimation mechanism, quite diff erent 
from our digital calculators. 

 At this stage, many of you are probably wondering whether I am not too liberal in 
attributing numerical competence to rats, and whether a simpler explanation of their 
behavior might not be found. Let me fi rst remark that the Clever Hans eff ect cannot have 
any infl uence on this type of experiment, because the rats are isolated in their cages and 
because all experimental events are controlled by an automated mechanical apparatus. 
However, is the rat really sensitive to the  number  of times the lever is pressed, or does it 
estimate the  time  elapsed since the beginning of a trial, or some other nonnumerical 
parameter? If the rat pressed at a regular rate, for instance once per second, then the 
above behavior might be fully explained by temporal rather than numerical estimation. 
While pressing on lever A, the rat would wait four, eight, twelve, or sixteen seconds, 
depending on the imposed schedule, before switching to lever B. Th is explanation 
might be considered simpler than the hypothesis that rats can count their movements — 
although, in fact, estimating duration and numbers are equally complex operations. 

 To refute such a temporal explanation, Francis Mechner and Laurence Guevrekian   4  
used a very simple control: Th ey varied the degree of food deprivation imposed on the 
rats. When the rats are really hungry, and therefore eager to obtain their food reward as 

4  Mechner & Guevrekian,     1962   
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      figure 1.3.  In an experiment by Mechner, a rat learns to press lever A a predetermined number 
of times before turning to a second lever B. Th e rat matches approximately the number selected by 
the experimenter, although its estimate becomes increasingly variable as the numbers get larger.    
 (Adapted from Mechner 1958 by permission of the author and publisher; copyright  ©  1958 by the Society for the 
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fast as possible, they press the levers much faster. Nevertheless, this increase in rate has 
absolutely no eff ect on the  number  of times they press the lever. Th e rats that are trained 
with a target number of four presses continue to produce between three and seven presses, 
while the rats trained to squeeze eight times continue to squeeze about eight times, and 
so on. Neither the average number of presses, nor the dispersion of the results, is modifi ed 
with higher rates. Obviously, a numerical rather than a temporal parameter drives the 
rats’ behavior. 

 A more recent experiment by Russell Church and Warren Meck, at Brown University, 
demonstrates that rats spontaneously pay as much attention to the number of events as to 
their duration. In Church and Meck’s experiment,   5  a loudspeaker placed in the rats’ 
cage presented a sequence of tones. Th ere were two possible sequences. Sequence A was 
made up of two tones and lasted a total of two seconds, whereas sequence B was made up 
of eight tones and lasted eight seconds. Th e rats had to discriminate between the two 
 melodies. Aft er each tune, two levers were inserted in the cage. To receive a food reward, 
the rats had to press the left  lever if they had heard sequence A, and the right if they had 
heard sequence B (see Figure   1.4  ).  

 Several preliminary experiments had shown that rats placed in this situation rapidly 
learned to press the correct lever. Obviously, they could use two distinct parameters to 
distinguish A from B: the total duration of the sequence (two versus eight seconds) or 
the number of tones (two versus eight). Did rats pay attention to duration, number, or 
both? In order to fi nd out, the experimenters presented some test sequences in which 
duration was fi xed while number was varied, and others in which number was fi xed while 
duration was varied. In the fi rst case, all sequences lasted four seconds, but were made up 
of from two to eight tones. In the second case, all sequences were made up of four tones, 
but duration extended from two to eight seconds. On all such test sequences, the rats 
always received a food reward, regardless of the lever they picked. In anthropocentric 
terms, the researchers were simply asking what these new stimuli sounded like to the 
rats, without letting the reward interfere with their decision. Th e experiment therefore 
 measured the rats’ ability to generalize previously learned behaviors to a novel situation. 

 Th e results are clear-cut. Rats generalized just as easily on duration as on number. 
When duration was fi xed, they continued to press the left  lever when they heard two 
tones, and the right lever when they heard eight tones. Conversely, when number was 
fi xed, they pressed left  for two-second sequences, and right for eight-second sequences. 
But what about intermediate values? Rats apparently reduced them to the closest  stimulus 
that they had learned. Th us, the new three-tone sequence elicited the same response as 
the two-tone sequence used for training, while sequences with fi ve or six tones were 
 classifi ed just as the original sequence of eight tones had been. Curiously, when the 
sequence comprised just four tones, the rats could not decide whether they should press 

5  Church & Meck,     1984   
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left  or right. For a rat, four appears to be the subjective midpoint between the numbers 
two and eight! 

 Keep in mind that the rats did not know during training that they would be tested 
subsequently with sequences that varied in duration or in number of tones. Hence, this 
experiment shows that when a rat listens to a melody, its brain simultaneously and 
 spontaneously registers both the duration and the number of tones. It would be a serious 
mistake to think that because these experiments use conditioning, they somehow teach 
the rats how to count. On the contrary, rats appear on the scene with state-of-the-art 

Duration discrimination

Number discrimination

2

3

4

5

6

8

2

3

4

5

6

8

100%
left

100%
right

50%

100%
left

100%
right

50%

      figure 1.4 .  Meck and Church trained rats to press a lever on the left  when they heard a 
short two-tone sequence, and a lever on the right when they heard a long eight-tone sequence. 
Subsequently, the rats generalized spontaneously: for equal numbers of sounds, they discriminated 
two-second sequences from eight-second sequences (top panel), and for an equal total duration, 
they discriminated two tones from eight tones (bottom panel). In both cases, four seems to be the 
“subjective middle” of 2 and 8, the point where rats cannot decide whether they should press right 
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 (Adapted from Meck and Church 1983.)     
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hardware for visual, auditory, tactile, and numerical perception. Conditioning merely 
teaches the animal to associate perceptions that it has always experienced, such as repre-
sentations of stimulus duration, color, or number, with novel actions such as pressing a 
lever. Th ere is no reason to think that number is a complex parameter of the external 
world, one that is more abstract than other so-called objective or physical parameters 
such as color, position in space, or temporal duration. In fact, provided that an animal 
is equipped with the appropriate cerebral modules, computing the approximate number 
of objects in a set is probably no more diffi  cult than perceiving their colors or their 
 positions. 

 Indeed, we now know that rats and many other species spontaneously pay attention 
to numerical quantities of all kinds — actions, sounds, light fl ashes, food morsels.   6  For 
instance, researchers have proved that raccoons, when presented with several transparent 
boxes with grapes inside, can learn to systematically select those that contain three grapes 
and to neglect those that contain two or four. Likewise, rats have been conditioned to 
systematically take the fourth tunnel on the left  in a maze, regardless of the spacing 
between consecutive tunnels. Other researchers have taught birds to pick the fi ft h seed 
that they fi nd when visiting several interconnected cages. And pigeons can, under some 
circumstances, estimate the number of times they have pecked at a target and can 
 discriminate, for instance, between forty-fi ve and fi ft y pecks. As a fi nal example, several 
animals, including rats, appear to remember the number of rewards and punishments 
that they have received in a given situation. An elegant experiment by E. J. Capaldi and 
Daniel Miller at Purdue University has even shown that when rats receive food rewards 
of two diff erent kinds — say, raisins and cereals — they keep in mind three pieces of infor-
mation at the same time: the number of raisins they have eaten, the number of pieces 
of cereals, and the total number of food items.   7  In brief, far from being an exceptional 
ability, arithmetic is quite common in the animal world. Th e advantages that it confers 
for survival are obvious. Th e rat that remembers that its hideout is the fourth to the left  
will move faster in the dark maze of tunnels that it calls home. Th e squirrel that notices 
that a branch bears two nuts, and neglects it for another one that bears three, will have 
more chances of making it safely through the winter.     

   How Abstract Are Animal Calculations?   

 When a rat presses a lever twice, hears two sounds, and eats two seeds, does it recognize 
that these events are all instances of the number “2”? Or can’t it see the link between 

6  For reviews of numerical cognition in animals, see Davis & Pérusse,     1988  ; Gallistel,     1989  ; Gallistel,     1990  ; 
Brannon & Terrace,     1998  ; Dehaene, Dehaene-Lambertz, & Cohen,     1998  ; Cantlon & Brannon,     2007  ; Jacob & 
Nieder,     2008  ; Nieder & Dehaene,     2009   

7  Capaldi & Miller,     1988   



Talented and Gift ed Animals  13

numbers that are perceived through diff erent sensory modalities? Th e ability to  generalize 
across diff erent modalities of perception or action is an important component of what 
we call the  number concept.  Let us suppose, as an admittedly extreme case, that a child 
 systematically utters the word “four” whenever he or she sees four objects, but randomly 
picks the words “three,” “four,” or “nine” when he or she hears four sounds or makes four 
jumps. Although performance is no doubt excellent with visual stimuli, we would be 
reluctant to grant the child knowledge of the concept of “4”, because we consider posses-
sion of this concept to entail being able to apply it to many diff erent multimodal situa-
tions. As a matter of fact, as soon as children have learned a number word, they can 
immediately use it to count their toy cars, the meows of their cat, or the misdemeanors of 
their little brother. What about rats? Is their numerical competence confi ned to certain 
sensory modalities, or is it abstract? 

 Unfortunately, any answer must remain tentative because few successful experiments 
have been done on multimodal generalization in animals. However, Russell Church and 
Warren Meck   8  have shown that rats represent number as an abstract parameter that is not 
tied to a specifi c sensory modality, be it auditory or visual. Th ey again placed rats in a cage 
with two levers, but this time stimulated them with visual as well as with auditory 
sequences. Initially, the rats were conditioned to press the left  lever when they heard two 
tones, and the right lever when they heard four tones. Separately, they were also taught to 
associate two light fl ashes with the left  lever, and four light fl ashes with the right lever. 
Th e issue was, how were these two learning experiences coded in the rat brain? Were they 
stored as two unrelated pieces of knowledge? Or, had the rats learned an abstract rule 
such as “2 is left , and 4 is right”? To fi nd out, the two researchers presented mixtures of 
sounds and light fl ashes on some trials. Th ey were amazed to observe that when they 
presented a single tone synchronized with a fl ash, a total of two events, the rats immedi-
ately pressed the left  lever. Conversely, when they presented a sequence of two tones 
 synchronized with two light fl ashes, for a total of four events, the rats systematically 
pressed the right lever. Th e animals generalized their knowledge to an entirely novel 
 situation. Th eir concepts of the numbers “2” and “4” were not linked to a low level of 
visual or auditory perception. 

 Consider how peculiar the rats’ behavior was on trials with two tones synchronized 
with two light fl ashes. Remember that in the course of their training, the rats were always 
rewarded for pressing the left  lever aft er hearing two tones, and likewise aft er seeing two 
fl ashes of light. Th us, both the auditory “two tones” stimulus and the visual “two fl ashes” 
stimulus were associated with pressing the left  lever. Nevertheless, when these two stimuli 
were presented together, the rats pressed the lever that had been associated with the 
number 4! To better grasp the signifi cance of this fi nding, compare it with a putative 
experiment in which rats are trained to press the left  lever whenever they see a square 

8  Church & Meck,     1984   



14  Th e Number Sense

(as opposed to a circle), and to respond left  whenever they see the color red (as opposed 
to green). If the rats were presented with a red square — the combination of both 
 stimuli — I bet that they would press even more resolutely on the left  lever. Why are the 
numbers of tones and fl ashes grasped diff erently from shapes and colors? Th e experiment 
demonstrates that rats “know,” to some extent, that numbers do not add up in the same 
way as shapes and colors. A square plus the color red makes a red square, but two tones 
plus two fl ashes do not evoke an even greater sensation of twoness. Rather, 2 plus 2 
makes 4, and the rat brain seems to appreciate this fundamental law of arithmetic. 

 Perhaps the best example of abstract addition abilities in an animal comes from work 
done by Guy Woodruff  and David Premack at the University of Pennsylvania.   9  Th ey set 
out to prove that a chimpanzee could do arithmetic with simple fractions. In their fi rst 
experiment, the chimpanzee’s task was simple: It was rewarded for selecting, among two 
objects, the one that was physically identical to a third one. For instance, when presented 
with a glass half-fi lled with a blue liquid, the animal had to point toward the identical 
glass when presented next to another glass that was fi lled up to three-quarters of its 
volume. Th e chimp immediately mastered this simple physical matching task. Th en the 
decision was progressively made more abstract. Th e chimp might be shown a half-full 
glass again, but now the options were either half an apple or three-quarters of an apple. 
Physically speaking, both alternatives diff ered widely from the sample stimulus; yet the 
chimpanzee consistently selected the half apple, apparently basing its responses on the 
conceptual similarity between half a glass and half an apple. Fractions of one-quarter, 
one-half, and three-quarters were tested with similar success: Th e animal knew that one-
quarter of a pie is to a whole pie as one-quarter of a glass of milk is to a full glass of milk. 

 In their last experiment, Woodruff  and Premack showed that chimpanzees could even 
mentally combine two such fractions: When the sample stimulus was made of one- quarter 
apple and one-half glass, and the choice was between one full disc or three- quarters disc, 
the animals chose the latter more oft en than chance alone would predict. Th ey were obvi-
ously performing an internal computation not unlike the addition of two fractions: ¼   +   
½  =  ¾. Presumably, they did not use sophisticated symbolic calculation algorithms as we 
would. But they clearly had an intuitive grasp of how these proportions should combine. 

 A fi nal anecdote concerning Woodruff  and Premack’s work: Th ough the manuscript 
reporting their work was initially titled “Primitive mathematical concepts in the chim-
panzee: proportionality and numerosity,” an editorial error made it appear in the pages of 
the scientifi c journal  Nature  under the heading  “Primative  mathematical concepts”! 
Involuntary as it was, this alteration was not so improper. For primitive, indeed, the 
 animal’s ability was not. And if “primative” was taken to mean “specifi c to primates,” then 
the neologism seemed very appropriate here, because such an abstract ability to add 
 fractions has not been observed in any other species so far. 

9  Woodruff  & Premack,     1981   
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 Addition, however, is not the only numerical operation in the animal repertoire. Th e 
ability to compare two numerical quantities is an even more fundamental ability, and 
indeed it is widespread among animals. Show a chimpanzee two trays on which you have 
placed several bits of chocolate.   10  On the fi rst tray, two piles of chocolate chips are visible, 
one with four pieces, and the other with three pieces. Th e second tray contains a pile with 
fi ve pieces of chocolate and, separate from it, a single piece. Leave the animal enough time 
to watch the situation carefully before letting it choose one tray and eat its content. 
Which tray do you think that it will pick? Most of the time, without training, the chim-
panzee selects the tray with the largest total number of chocolate chips (see Figure   1.5  ). 
Hence, the greedy primate must spontaneously compute the total of the fi rst tray 
(4  +  3 = 7), then the total of the second tray (5  +  1 = 6), and fi nally it must reckon that 7 
is larger than 6 and that it is therefore advantageous to choose the fi rst tray. If the chimp 
could not do the additions, but was content with choosing the tray with the largest single 
pile of chocolates, it should have been wrong in this particular example because, while the 
pile with fi ve chips on the second tray exceeds each of the piles on the fi rst tray, the total 
amount of chips on the fi rst tray is larger. Clearly, the two additions and the fi nal 
 comparison operation are all required for success.  

10  Rumbaugh, Savage-Rumbaugh, & Hegel,     1987   

      figure 1.5.  A chimpanzee spontaneously selects the pair of trays with the greater total number 
of chocolate bits, revealing its inborn ability to add and compare approximate numerosities.   
 (Reprinted from Rumbaugh et al. 1987.)     
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   Although chimps perform remarkably well in selecting the larger of two numbers, 
their performance is not devoid of errors. As is frequently the case, the nature of these 
errors provides important cues about the nature of the mental representation employed.   11  
When the two quantities are quite diff erent, such as 2 and 6, chimpanzees hardly ever 
fail: Th ey always select the larger. As the quantities become closer, however, performance 
systematically decreases. When the two quantities diff er by only one unit, only 70 %  of 
the chimp’s choices are correct. Th is systematic dependency of error rate on the numerical 
separation between the items is called the  distance eff ect . It is also accompanied by a 
  magnitude eff ect . For equal numerical distances, performance decreases as the numbers to 
be compared become larger. Chimpanzees have no diffi  culty in determining that 2 is 
larger than 1, even though these two quantities diff er only by one unit. However, they fail 
increasingly more oft en as one moves to larger numbers such as 2 versus 3, 3 versus 4, and 
so on. Similar distance and magnitude eff ects have been observed in a great variety of 
tasks and in many species, including pigeons, rats, dolphins, and apes. No animals seem 
able to escape these laws of behavior — including, as we shall see later,  Homo sapiens . 

 Why are these eff ects of distance and magnitude important? Because they 
demonstrate, once again, that animals do not possess a digital or discrete representation 
of  numbers. Only the fi rst few numbers — 1, 2, and 3 — can be discriminated with 
high  accuracy. As soon as one advances toward larger quantities, fuzziness increases. 
Th e  variability in the internal representation of numbers grows in direct proportion to 
the quantity represented. Th is is why, when numbers get large, an animal has problems 
distinguishing number  n  from its successor  n   +  1. One should not conclude, however, that 
large numbers are out of reach of the rat or pigeon brain. In fact, when numerical distance 
is suffi  ciently large, animals can successfully discriminate and compare very large  numbers, 
on the order of 45 versus 50. Th eir imprecision simply leaves them blind to the fi nesses of 
arithmetic such as the diff erence between 49 and 50. 

 Within the limits set by this internal imprecision, we have seen through numerous 
examples that animals possess functional mathematical tools. Th ey can add two  quantities 
and spontaneously choose the larger of two sets. Should we really be that surprised? Let 
us fi rst try to think whether the outcome of these experiments could possibly have been 
any diff erent. When a hungry dog is off ered a choice between a full dish and a half-full 
one of the same food, doesn’t it spontaneously pick the larger meal? Acting otherwise 
would be devastatingly irrational. Choosing the larger of two amounts of food is  probably 
one of the preconditions for the survival of any living organism. Evolution has been able 
to conceive such complex strategies for food gathering, storing, and predation, that it 
should not be astonishing that an operation as simple as the comparison of two  quantities 
is available to so many species. It is even likely that a mental comparison algorithm was 
discovered early on, and perhaps even reinvented several times in the course of evolution. 

11  Dehaene, Dehaene-Lambertz et coll.,     1998   
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Even the most elementary of organisms, aft er all, are confronted with a never-ending 
search for the best environment with the most food, the fewest predators, the most 
 partners of the opposite sex, and so on. One must optimize in order to survive, and 
 compare in order to optimize. 

 We still have to understand, however, by what neural mechanisms such calculations 
and comparisons are carried out. Are there minicalculators in the brains of birds, rats, and 
primates? How do they work?     

   The Accumulator Metaphor   

 How can a rat know that 2 plus 2 makes 4? How can a pigeon compare forty-fi ve pecks 
with fi ft y? I know by experience that these results are oft en met with disbelief, laughter, or 
even exasperation — especially when the audience is composed of professors of  mathematics! 
Our Western societies, ever since Euclid and Pythagoras, have placed  mathematics at the 
pinnacle of human achievements. We view it as a supreme skill that either requires painful 
education, or comes as an innate gift . In many a philosopher’s mind, the human ability for 
mathematics derives from our competence for language, so that it is inconceivable that an 
animal without language can count, much less calculate with numbers. 

 In this context, the observations about animal behavior that I have just described are 
in danger of being simply disregarded, as oft en happens with unexpected or seemingly 
 aberrant scientifi c results. Without a theoretical framework to support them, they might 
appear as isolated fi ndings — peculiar indeed, but eventually inconclusive and certainly not 
suffi  cient to question the equation “mathematics  =  language.” To sort out such  phenomena, 
we need a theory that explains, quite simply, how it is possible to count without words. 

 Fortunately, such a theory exists.   12  In fact, we all know of mechanical devices whose 
performances are not so diff erent from those of rats. All cars, for instance, are equipped 
with a counting mechanism that keeps a record of the number of miles that have accumu-
lated since the vehicle was fi rst put in circulation. In its simplest version, this “counter” is 
just a cog wheel that advances by one notch for each additional mile. At least in principle, 
this example shows how a simple mechanical device may keep a record of an accumulated 
quantity. Why could a biological system not incorporate similar principles of counting? 

 Th e car counter is an imperfect example because it uses digital notation, a symbolic 
system that is most probably specifi c to humans. In order to account for the arithmetical 
abilities of animals, we should look for an even simpler metaphor. Imagine Robinson 
Crusoe, on his desert island, alone and helpless. For the sake of argument, let us even 
 imagine that a blow to the head has deprived him of any language, leaving him unable to 
use number words for counting or calculation. How could Robinson build an  approximate 

12  Meck & Church,     1983   
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calculator using only the makeshift  means available to him? Th is is actually easier than it 
would seem. Suppose that Robinson has discovered a spring in the vicinity. He carves a 
tank from a large log, and places this accumulator next to the spring, so that water does not 
fl ow directly into it but can be temporarily diverted by using a small bamboo pipe. With 
this rudimentary device, of which the accumulator is the central component, Robinson 
will be able to count, add, and compare approximate numerical magnitudes. In essence, 
the accumulator enables him to master arithmetic as well as a rat or a pigeon does. 

 Suppose that a canoe loaded with cannibals approaches Robison’s island. How can 
Robinson, who is following this scene with a telescope, keep a record of the number of 
attackers using his calculator? First, he would have to empty the accumulator. Th en, each 
time a cannibal landed, Robinson would briefl y divert some water from the spring into 
the accumulator. Furthermore, he does this so that it always takes a fi xed amount of time 
and that the water fl ow remains constant throughout. Th us, for each attacker to be 
counted, a more or less fi xed amount of water fl ows into the accumulator. In the end, the 
water level in the accumulator will be equal to  n  times the amount of water diverted at 
each step. Th is fi nal water level may then serve as an approximate representation of the 
number  n  of cannibals who have landed. Th is is because it depends only on the number 
of events that have been counted. All other parameters, such as the duration of each 
event, the time interval between them, and so on, have no infl uence on it. Th e fi nal level 
of water in the accumulator is thus completely equivalent to number. 

 By marking the level reached by water in the accumulator, Robinson can keep a record 
of how many people have landed, and he may use this number in later calculations. Th e 
next day, for instance, a second canoe approaches. To estimate the total number of 
 attackers, Robinson fi rst fi lls the accumulator up to the level of the preceding day’s marker, 
and then adds a fi xed amount of water for each newcomer, just as he did previously Th e 
new water level, aft er this operation is completed, will represent the result of the addition 
of attackers in the fi rst canoe and in the second. Robinson can keep a permanent record 
of this computation by carving a diff erent mark on the accumulator. 

 Th e day aft er, a few savages leave the island. To evaluate their number, Robinson  empties 
his accumulator and repeats the above procedure, adding some water for each departing 
cannibal. He realizes that the fi nal water level, which represents the number of people who 
have left , is much lower than the previous day’s mark. By comparing the two water levels, 
Robinson reaches the worrisome conclusion that, in all likelihood, the number of natives 
that have left  is smaller than the number of natives that have arrived in the past two days. 
In brief, Robinson, using his rudimentary device, can count, compute simple additions, 
and compare the results of his calculations, just like the animals in the above experiments. 

 A clear drawback of the accumulator is that numbers, although they form a discrete 
set, are represented by a continuous variable: water level. Given that all physical systems 
are inherently variable, the same number may be represented, at diff erent times, by 
 diff erent amounts of water in the accumulator. Let us suppose, for instance, that water 
fl ow is not perfectly constant and varies randomly by between 4 and 6 liters per second, 
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with a mean of 5 liters per second. If Robinson diverts water for two-tenths of a second 
into the accumulator, one liter on average will be transferred. However, this quantity will 
vary from 0.8 to 1.2 liters. Th us, if fi ve items are counted, the fi nal water level will vary by 
between 4 and 6 liters. Given that the very same levels could have been reached if four or 
six items had been counted, Robinson’s calculator is unable to reliably discriminate the 
numbers 4, 5, and 6. If six cannibals land, and later only fi ve depart, Robinson is in danger 
of failing to notice that one of them is missing. Th is, by the way, is exactly the situation 
that confronted the crow in the anecdote I mentioned at the beginning of this chapter! 
Robinson clearly will be better able to discriminate numbers that are more diff erent; this 
is the distance eff ect. Th is eff ect will be exacerbated as the numbers become larger, thus 
reproducing the magnitude eff ect that also characterizes animal behavior. 

 One might object that the imaginary Robinson I am describing is not particularly 
clever. What prevents him from using marbles instead of imprecise amounts of water? 
Dropping in a bowl a single marble for each counted item would provide him with a 
discrete and precise representation of their number. In this manner, he would avoid errors 
even in the most complex of subtractions. But Robinson’s machine is used here only as a 
metaphor for the animal brain. Th e nervous system — at least the one that rats and pigeons 
possess — does not seem to be able to count using discrete tokens. It is fundamentally 
imprecise, and seems unable to precisely keep track of the items that it counts; hence its 
increasing variance for larger and larger numbers. 

 Although the accumulator model is described here in a very informal manner, it is 
 actually a rigorous mathematical model, the equations of which accurately predict 
 variations in animal behavior as a function of number size and numerical distance.   13  Th e 
accumulator metaphor thus helps us to understand why rat behavior is so variable from 
one trial to the next. Even aft er considerable training, a rat seems unable to press exactly 
four times on a lever, but it can press four, fi ve, or six times on diff erent trials. I believe that 
this is due to a fundamental inability to represent numbers 4, 5, and 6 in a discrete and 
individualized format, as we do. To a rat, numbers are just approximate magnitudes, 
 variable from time to time, and as fl eeting and elusive as the duration of sounds or the 
saturation of colors. Even when an identical sequence of sounds is played twice, rats 
 probably do not perceive the exact same number of sounds, but only the fl uctuating level 
of an internal accumulator. 

 Of course, the accumulator is nothing more than a vivid metaphor that merely 
 illustrates how a simple physical device can mimic, in considerable detail, experiments on 
animal arithmetic. Th ere are no taps and recipients in the brains of rats and pigeons. 
Would it be possible, however, to identify, within the cerebrum, neuronal systems that 
might occupy a function similar to the components in the accumulator model? Th is is a 
completely open question. Currently, scientists are merely beginning to understand how 

13  Meck & Church,     1983  , and for a more recent treatment, Dehaene,     2007   
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certain parameters are modifi ed by various pharmacological substances. Injecting rats 
with metamphetamine, for instance, seems to accelerate the internal counter.   14  Th e rats 
injected with this substance respond to a sequence of four sounds as if they had been fi ve 
or six. It is as if the fl ow of water to the accumulator were accelerated by metamphet-
amine. For each item counted, an amount of water larger than usual reaches the accumu-
lator, thus making the fi nal water level too great. Th is is how a 4 in the input may end up 
looking like a 6 at the output. We still have little knowledge, however, of the brain regions 
in which metamphetamine produces its accelerating eff ect. Cerebral circuitry is far from 
having revealed all its secrets.     

   Number-Detecting Neurons?   

 Although the cerebral circuits for number processing remain largely unknown, neural 
network simulations can be used to speculate on what their organization may be like. 
Neural network models are algorithms that run on a conventional digital computer, but 
emulate the kinds of computations that may go on in real brain circuits. Of course, the 
simulations are always vastly simplifi ed when compared to the overarching complexity of 
real networks of neurons. In most computer models, each neuron is reduced to a digital 
unit with an output level of activation varying between 0 and 1. Active units excite or 
inhibit their neighbors, as well as more distant units, via connections with a variable 
weight, which are analogous to the synapses that connect real neurons. At each step, each 
simulated unit sums up the inputs it receives from other units, and switches on or off  
depending on whether the sum exceeds a given threshold. Th e analogy to a real nerve cell 
is crude, but one crucial property is preserved: the fact that a great many simple computa-
tions take place at the same time in several neurons distributed within multiple circuits. 
Most neurobiologists believe that such massive parallel processing is the key property 
that enables brains to perform complex computations in a short time using relatively slow 
and unreliable biological hardware. 

 Can parallel neuronal processing be used to process numbers? With Jean-Pierre 
Changeux, a neurobiologist at the Pasteur Institute in Paris, I have proposed a tentative 
neural network simulation of how animals extract numbers from their environment 
quickly and in parallel.   15  Our model addresses a simple problem that rats and pigeons 
routinely solve: given an input retina on which objects of various sizes are displayed, and 
given a cochlea on which tones of various frequencies are played, can a network of simu-
lated neurons compute the total number of visual and auditory objects? According to the 
accumulator model, this number can be computed by adding to an internal accumulator 

14  For recent review, see Williamson, Cheng, Etchegaray, & Meck,     2008   
15  Dehaene & Changeux,     1993  . Th is model has been later elaborated by others: Verguts & Fias,     2004  ; Verguts, 

Fias, & Stevens,     2005  . See also Dehaene,     2007  , and Pearson, Roitman, Brannon, Platt, & Raghavachari,     2010   
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a fi xed quantity for each input item. Th e challenge is to do this with networks of simu-
lated nerve cells, and to achieve a representation of number that is independent of the size 
and location of visual objects, as well as of the time of presentation of auditory tones. 

 We solved the problem by fi rst designing a circuit that normalizes the visual input with 
respect to size. Th is network detects the locations occupied by objects on the retina, and 
allocates to each object, regardless of size and shape, an approximately constant number 
of active neurons on a location map. Th is normalization step is crucial because it allows 
the network to count each object as “one,” regardless of size. As we shall see below, in 
mammals this operation may be achieved by circuits of the posterior parietal cortex, 
which are known to compute a representation of object location without taking exact 
shape and size into account. 

 In our simulation, a similar operation is also performed for auditory stimuli. Regardless 
of the time intervals at which they are received, auditory inputs are accumulated in a single 
memory store. Once these normalizations for size, shape, and time of presentation have 
been accomplished, it is easy to estimate number — one simply has to evaluate the total 
neuronal activity in the normalized visual map and in the auditory memory store. Th is total 
is equivalent to the fi nal water level in the accumulator, and it provides a  reasonably reliable 
estimate of number. In our simulation, the summation operation is taken care of by an array 
of units that pool activations from all the underlying visual and auditory units. Under 
 certain conditions, these output units fi re only when the total activity they receive falls 
within a predefi ned interval that varies from one neuron to the next. Each of these simu-
lated neurons, therefore, works as a number detector that reacts only when a certain approx-
imate number of objects is seen (Figure   1.6  ). One unit in the network, for instance, responds 
optimally when presented with four objects — be they, for instance, four visual blobs, four 
sounds, or two blobs and two sounds. Th e same unit reacts infrequently when presented 
with three or fi ve objects, and not at all in the remaining cases. It therefore works as an 
abstract detector of number 4. Th e entire number line can be covered by such  detectors, 
each tuned to a diff erent approximate number, with the precision of tuning decreasing as 
one moves to increasingly larger numbers. Because the simulated neurons process all visual 
and auditory inputs simultaneously, the array of number detectors responds very quickly —
 it can estimate the cardinal of a set of four objects in parallel over the entire retina, without 
having to orient in turn toward each item as we do when we count.  

 Astonishingly, the number-detecting neurons that the model predicts seem to have 
been identifi ed at least once in an animal brain. In the 1960s, Richard Th ompson, a neu-
roscientist at the University of California at Irvine, recorded the activity of single neu-
rons in the cortex of cats while the animals were presented with series of tones or of light 
fl ashes.   16  Some cells fi red only aft er a certain number of events. One neuron, for instance, 
reacted aft er six events of any kind, regardless of whether this was six fl ashes of light, 

16  Th ompson, Mayers, Robertson, & Patterson,     1970   
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six brief tones, or six longer tones. Sensory modality did not seem to matter: Th e neuron 
apparently cared only about number. Unlike a digital computer, it did not respond in a 
discrete all-or-none manner, either. Rather, its activation level grew aft er the fi ft h item, 
reached a peak for the sixth, and decreased for larger numbers of items, a response profi le 
quite similar to that of the simulated neurons in our model. Several similar cells, each 
tuned to a diff erent number, were recorded in a small area of the cat’s cortex. 

 Th us, there might well be a specialized brain area, equivalent to Robinson’s accumu-
lator, in the animal brain. Unfortunately, Th ompson’s study, published in the prestigious 
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      figure 1.6.  A computer-simulated neural network incorporates “numerosity detectors” 
that respond preferentially to a specifi c number of input items (top panel). Each curve shows the 
response of a given unit to diff erent numbers of items. Note the decreasing selectivity of responses 
as input numerosity increases. In 1970, Th ompson and his colleagues recorded similar “number-
coding” neurons in the association cortex of anesthetized cats (bottom panel). Th e neuron 
illustrated here responds preferentially to six consecutive events, either six fl ashes of light one 
second apart, or six tones one or four seconds apart.   
 (Top, adapted from Dehaene and Changeux 1993; bottom, Th ompson et al. 1970. Copyright  ©  1970 by American 
Association for the Advancement of Science).     


