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Preface to the Second Edition

A SCIENTIFIC BOOK is an unintentional time capsule. It has no sell-by date, which
often means that readers will evaluate its theories, facts, and evidence, many years after
publication, and do so with the omniscience of hindsight. Zhe Number Sense, a book
I wrote fifteen years ago, in my late twenties, is no exception to this rule.

I was lucky to start work on Zhe Number Sense in the carly 1990s, at a time when
number research was in its infancy. A handful of laboratories had only just begun to
scratch the surface of the field. Some focused on how infants perceived sets of objects.
Others specialized in the way schoolchildren learn their multiplication tables, or studied
the bizarre behavior of patients suffering from brain lesions that disrupted calculation.
Finally, some, like me, made the first forays into brain imaging research to find out which
brain areas lit up when students were asked a simple arithmetic question, like, is 6 larger
than 5? Only a few of us, at the time, could see how all these studies would one day be
pulled together into a single field, mathematical cognition, with multifaceted techniques

all aimed at answering Warren McCulloch’s stimulating query:

“What is a number, that a man may know it, and a man, that he may know a

number?”

The Number Sense was written with this single goal in mind: to assemble all the avail-
able facts on how the brain does elementary arithmetic, and prove that a new and promis-
ing field of research, ripe with empirical findings, was dawning. I also hoped that it might,
perhaps, shed light on ancient philosophical disputes that questioned the very nature of

ix
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mathematics. During the three years that it took me to put together all the different lines
of research in the field, my enthusiasm increased as I realized how all the pieces of this
complex puzzle fitted together into a coherent whole. Animal research on number
pointed to an age-old competence for processing approximate quantities. This “number
sense;” which is also present in infants, gave humans the intuition of number. Cultural
inventions, such as the abacus or Arabic numerals, then transformed it into our fully-
fledged capacity for symbolic mathematics. It was therefore obvious that a careful look at
the brain structures for the number sense could shed much light on our understanding of
mathematics. It provided a clear view of how evolution had proceeded, and reconnected
our human abilities for mathematics to the way monkeys’ and even rats’ and pigeons’
brains represent numbers.

Since this book was written, some fifteen years ago, a flurry of innovative research
has given this arca a stronger impetus that I ever imagined. Mathematical cognition is
now a well-established domain in cognitive science, and is no longer centered exclusively
on the concept of number and its origins but has expanded into the related domains of
algebra and geometry. Several research topics that were merely outlined in The Number
Sense have become fully-fledged areas of research: number sense in animals, brain imag-
ing of numerical computations, the nature of the impairment in children with mathemat-
ical difficulties... One of the most exciting breakthroughs has been the discovery of single
neurons that code for number in the monkey brain, at a precise site in the parietal lobe
that appears to be a plausible homolog of the human area that activates when we calcu-
late. Another rapidly developing area has to do with the application of this knowledge to
education: we are beginning to understand how schooling develops the understanding of
exact number and arithmetic, and how children who are at risk of developing dyscalculia
can be helped with very simple games and software.

When I reread the first edition of this book, I was pleased to sce that all of these ideas
were already germinating, albeit somewhat speculatively, fifteen years ago. Now that
research findings have solidly grounded them, I am convinced that a new edition of
The Number Sense is in order. To be sure, several excellent books had been published
since 1997, among them Brian Butterworth’s Mathematical Brain (1999), Rafael Ntfiez
and George Lakoft’s Where Mathematics Comes From (2000), and Jamie Campbell’s
edited Handbook of Mathematical Cognition (2004). But none of them captures the full
range of what we understand today about number and the brain.

I am grateful to my agents, Max and John Brockman, and to my editors, Abby Gross
and Odile Jacob, for encouraging me to embark on this new version and for helping me
to decide what form it should take. We quickly agreed that to rewrite the past would be
awkward or even presumptuous. It seemed important to give the reader an appropriate
sense of how the field came into being twenty years ago, what motivated our current
hypotheses, and how experimental methods had evolved since then, either to flesh out
our theories—or, occasionally, but fortunately not too often, to refute them. Thus,

we conceived a second edition that would leave the original untouched but would
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supplement it with new references and, above all, a long, new, final chapter outlining the
most outstanding discoveries that have been made since the first edition appeared.
Selecting the findings that belonged in this chapter was an arduous task, since the field
has literally exploded in the last fifteen years. Indeed, there are now hundreds of scientific
findings that would have been relevant. Nevertheless, I decided to stick to a small list
of surprising facts that, I believe, illuminate what arithmetic is at the brain level, and
therefore how we should teach it.

Most mathematicians, overtly or covertly, are Platonists. They picture themselves as
explorers of a continent of ideas independent of the human mind, older than life and
immanent in the very structure of the Universe. In his treatise on The Nature and Meaning
of Numbers, the great mathematician Richard Dedekind, however, thought otherwise.
Numbers, he said, are “free creations of the human mind,” “an immediate emanation from
the pure laws of thought.” I could not agree more—but then the burden of clucidation
clearly falls upon psychologists and neuroscientists, who will have to figure out how
a finite brain, a mere collection of nerve cells, can conceive such abstract thoughts.
The present book should be considered as a modest contribution to this fascinating

question.

S.D.
Palaiseau, France
July 2010
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Preface to the First Edition

WE ARE SURROUNDED by numbers. Etched on credit cards or engraved on coins,
printed on pay checks or aligned on computerized spread sheets, numbers rule our lives.
Indeed, they lie at the heart of our technology. Without numbers, we could not send
rockets roaming the solar system, nor could we build bridges, exchange goods, or pay our
bills. In some sense, then, numbers are cultural inventions only comparable in impor-
tance to agriculture or to the wheel. But they might have even deeper roots. Thousands
of years before Christ, Babylonian scientists used clever numerical notations to compute
astronomical tables of amazing accuracy. Tens of thousands of years prior to them,
Neolithic men recorded the first written numerals by engraving bones or by painting
dots on cave walls. And, as I shall try to convince you later on, millions of years earlier
still, long before the dawn of humankind, animals of all species were already registering
numbers and entering them into simple mental computations. Might numbers, then,
be almost as old as life itself? Might they be engraved in the very architecture of our
brains? Do we all possess a “number sense,” a special intuition that helps us make sense
of numbers and mathematics?

Around the age of sixteen, as I was training to become a mathematician, I became
fascinated by the abstract objects I was taught to manipulate, and above all by the sim-
plest of them—numbers. Where did they come from? How was it possible for my brain
to understand them? Why did it seem so difficult for most people to master them?
Historians of science and philosophers of mathematics had provided some tentative
answers, but to a scientifically oriented mind their speculative and contingent character was

unsatisfactory Furthermore, scores of intriguing facts about numbers and mathematics

xiii
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were left unanswered in the books I knew of. Why did all languages have at least some
number names? Why did everybody seem to find multiplications by seven, eight, or
nine particularly hard to learn? Why couldn’t I seem to recognize more than four objects
at a glance? Why were there ten boys for one girl in the high-level mathematics classes
I was attending? What tricks allowed lightning calculators to multiply two three-digit
numbers in a few seconds?

As I learned increasingly more about psychology, neurophysiology, and computer
science, it became obvious that the answers had to be looked for, not in history books,
but in the very structure of our brains—the organ that enables us to create mathematics.
It was an exciting time for a mathematician to turn to cognitive neuroscience. New exper-
imental techniques and amazing results seemed to appear every month. Some revealed
that animals could do simple arithmetic. Others asked whether babies had any notion
of 1 plus 1. Functional imaging tools were also becoming available that could visualize
the active circuits of the human brain as it calculates and solves arithmetical problems.
Suddenly, the psychological and cerebral bases of our number sense were open to experi-
mentation. A new field of science was emerging: mathematical cognition, or the scien-
tific inquiry into how the human brain gives rise to mathematics. I was lucky enough to
become an active participant in this quest. This book provides a first glance at this new
field of research that my colleagues in Paris, and several rescarch teams throughout the
world, are still busy developing.

I am indebted to many people for helping me complete the transition from mathemat-
ics to neuropsychology. First and foremost, my research program on arithmetic and the
brain could never have developed without the generous assistance of three outstanding
teachers, colleagues, and friends who deserve very special thanks: Jean-Pierre Changeux
in neurobiology, Laurent Cohen in neuropsychology, and Jacques Mehler in cognitive
psychology. Their support, advice, and often direct contribution to the work described
here have been of invaluable help.

I would like to acknowledge my many research companions of the past two decades, and
particularly the crucial contribution of the many students and post-docs, many of whom
became essential collaborators and, quite simply, friends that count: Rokny Akhavein, Serge
Bossini, Marie Bruandet, Antoine Del Cul, Rapha¢l Gaillard, Pascal Giraux, Ed Hubbard,
Véronique Izard, Markus Kiefer, André Knops, Etienne Keechlin, Sid Kouider, Gurvan
LeclecH, Cathy Lemer, Koleen McCrink, Nicolas Molko, Lionel Naccache, Manuela
Piazza, Philippe Pinel, Maria-Grazia Ranzini, Susannah Revkin, Gérard Rozsavolgyi, Elena
Rusconi, Mariano Sigman, Olivier Simon, Arnaud Viarouge, and Anna Wilson.

For the first edition of this book, I also benefited from the advice of many other emi-
nentscientists. Mike Posner, Don Tucker, Michael Murias, Denis Le Bihan, André Syrota,
and Bernard Mazoyer shared with me their in-depth knowledge of brain imaging.
Emmanuel Dupoux, Anne Christophe, and Christophe Pallier advised me in psycholin-
guistics. I am also grateful for ground-shaking debates with Rochel Gelman and Randy

Gallistel, and for judicious remarks by Karen Wynn, Sue Carey, and Josiane Bertoncini



on child development. The late professor Jean-Louis Signoret had introduced me to the
fascinating domain of neuropsychology. Subsequently, numerous discussions with
Alfonso Caramazza, Michael McCloskey, Brian Butterworth, and Xavier Seron greatly
enhanced my understanding of this discipline. Xavier Jeannin and Michel Dutat, finally,
assisted me in programming my experiments.

For this second edition, many additional collaborators, in France and abroad, helped
me progress in my research: Hillary Barth, Eliza Block, Jessica Cantlon, Laurent Cohen
Jean-Pierre Changeux, Evelyn Eger, Lisa Feigenson, Guillaume Flandin, Tony Greenwald,
Marc Hauser, Antoinette Jobert, Ferath Kherif, Andrea Patalano, Lucie Hertz-Pannier,
Karen Kopera-Frye, Denis Le Bihan, Stéphane Lehéricy, Jean-Francois Mangin,
J. Frederico Marques, Jean-Baptiste Poline, Denis Rivitre, Jérdme Sackur, Elizabeth Spelke,
Ann Streissguth, Bertrand Thirion, Pierre-Frangois van de Moortele, and Marco Zorzi.
Talso gratefully acknowledge all the colleagues who, across the years and the oceans, through
relentless discussions, helped me sharpen my thoughts and correct my errors. An exhaustive
list is impossible, but my thoughts go first and foremost to Elizabeth Brannon, Wim Fias,
Randy Gallistel, Rochel Gelman, Usha Goswami, Nancy Kanwisher, Andreas Nieder,
Michael Posner, Bruce McCandliss, Sally and Bennett Shaywitz, and Herb Terrace.

My research on numerical cognition received a massive boost when I received a
ten-year Centennial Fellowship grant from the McDonnell Foundation, which played
an essential role in my career. It was also supported by INSERM (French Institute for
Health and Medical Research, CEA (Atomic Energy Commission), Collége de France,
Paris XI University, the Fyssen foundation, the Bettencourt-Schueller Foundation, the
Volkswagen foundation, the Louis D. Foundation of the Institut de France, and the French
Foundation for Medical Research. The preparation of this book greatly benefited from the
close scrutiny of Brian Butterworth, Robbie Case, Markus Giaquinto, and Susana Franck
for the English edition, and of Jean-Pierre Changeux, Laurent Cohen, Ghislaine Dehaene-
Lambertz and Gérard Jorland for the French edition. Warm thanks go also to Joan Bossert
and Abby Gross, my editors at Oxford University Press, John Brockman, my agent, and
Odile Jacob, my French editor. Their trust and support was very precious.

I would also like to thank the publishers and authors who kindly granted me the
permission to reproduce the figures and quotes used in this book. Special thanks go
to Gianfranco Denes for drawing my attention to the remarkable section of Ionesco’s
Lesson that is cited in Chapter 8.

Last but not least, a word of thanks cannot suffice to express my feelings for my family,
Ghislaine, Oliver, David, and Guillaume, who patiently supported me during the long
months spent exploring and writing about the universe of numbers. This book is dedi-

cated to them.

S.D.
Piriac, France

August 1996
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Any poet, even the most allergic to
mathematics, has to count up to twelve
in order to compose an alexandrine.

RAYMOND QUENEAU

Introduction

AS I FIRST sat down to write this book, I was faced with a ridiculous problem of arith-
metic: If this book is to have 250 pages and nine main chapters, how many pages will each
chapter have? After thinking hard, I came to the conclusion that each should have slightly
fewer than 30 pages. This took me about five seconds, not bad for a human, yet an eternity
compared to the speed of any electronic calculator. Not only did my calculator respond
instantancously, but the result it gave was accurate to the tenth decimal: 27.7777777778!

Why is our capacity for mental calculation so inferior to that of computers? And
how do we reach excellent approximations such as “slightly fewer than 30” without
resorting to an exact calculation, something that is beyond the best of electronic calcula-
tors? The resolution of these nagging questions, which is the subject matter of this book,

will confront us with even more challenging riddles:

o Why is it that after so many years of training, the majority of us still do not know
for sure whether 7 times 8 is 54 or 64... or is it 562

« Why is our mathematical knowledge so vulnerable that a small cerebral lesion is
enough to abolish our sense of numbers?

« How can a 5-month-old baby know that 1 plus 1 equals 22

« How is it possible for animals without language, such as chimpanzees, rats, and

pigeons, to have some knowledge of elementary arithmetic?

My hypothesis is that the answers to all these questions must be sought at a single source:

the structure of our brain. Every single thought we entertain, every calculation we

xvii
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perform, results from the activation of specialized neuronal circuits implanted in our
cerebral cortex. Our abstract mathematical constructions originate in the coherent
activity of our cerebral circuits, and of the millions of other brains preceding us that
helped shape and select our current mathematical tools. Can we begin to understand the
constraints that our neural architecture imposes on our mathematical activities?

Evolution, ever since Darwin, has remained the reference for biologists. In the case of
mathematics, both biological and cultural evolution matter. Mathematics is not a static
and God-given ideal, but an ever-changing field of human research. Even our digital
notation of numbers, as obvious as it may seem now, is the fruit of a slow process
of invention over thousands of years. The same holds for the current multiplication
algorithm, the concept of square root, the sets of real, imaginary, or complex numbers,
and so on. All still bear scars of their difficult and recent birth.

The slow cultural evolution of mathematical objects is a product of a very special
biological organ, the brain, that itself represents the outcome of an even slower biologi-
cal evolution governed by the principles of natural selection. The same selective pressures
that have shaped the delicate mechanisms of the eye, the profile of the hummingbird’s
wing, or the minuscule robotics of the ant, have also shaped the human brain. From year
to year, species after species, ever more specialized mental organs have blossomed within
the brain to better process the enormous flux of sensory information received, and to
adapt the organism’s reactions to a competitive or even hostile environment.

One of the brain’s specialized mental organs is a primitive number processor that pre-
figures, without quite matching t, the arithmetic that is taught in our schools. Improbable
as it may seem, numerous animal species that we consider stupid or vicious, such as rats
and pigeons, are actually quite gifted at calculation. They can represent quantities men-
tally and transform them according to some of the rules of arithmetic. The scientists who
have studied these abilities believe that animals possess a mental module, traditionally
called the “accumulator,” that can hold a register of various quantities. We shall see later
how rats exploit this mental accumulator to distinguish series of two, three, or four
sounds, or to compute approximate additions of two quantities. The accumulator mecha-
nism opens up a new dimension of sensory perception through which the cardinal of a set
of objects can be perceived just as easily as their color, shape, or position. This “number
sense” provides animals and humans alike with a direct intuition of what numbers mean.

Tobias Dantzig, in his book exalting “number, the language of science,” underlined the
primacy of this elementary form of numerical intuition: “Man, even in the lower stages of
development, possesses a faculty which, for want of a better name, I shall call Number
Sense. This faculty permits him to recognize that something has changed in a small
collection when, without his direct knowledge, an object has been removed or added

to the collection.”!

' Dantzig, 1967.
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Dantzig wrote these words in 1954, when psychology was dominated by Jean Piaget’s
theory, which denied young children any numerical abilities. It took twenty more years
before Piagetian constructivism was definitely refuted and Dantzig’s insight was con-
firmed. All people possess, even within their first year of life, a well-developed intuition
about numbers. Later, we consider in some detail the ingenious experiments which dem-
onstrate that human babies, far from being helpless, already know right from birth some
fragments of arithmetic comparable to the animal knowledge of number. Elementary
additions and subtractions are already available to 6-month-old babies!

Let there be no misunderstanding. Obviously, only the adult Homo sapiens brain has
the power to recognize that 37 is a prime number, or to calculate approximations of the
number . Indeed, such feats remain the privilege of only a few humans in a few cultures.
The baby brain and 4 fortiors the animal brain, far from exhibiting our mathematical
flexibility, work their minor arithmetical miracles only within quite limited contexts.
In particular, their accumulator cannot handle discrete quantities, but only continuous
estimates. Pigeons will never be able to distinguish 49 from 50, because they cannot
represent these quantities other than in an approximate and variable fashion. For an
animal, 5 plus 5 does not make 10, but only abous 10: maybe 9, 10, or 11. Such poor
numerical acuity, such fuzziness in the internal vision of numbers, prevents the emer-
gence of exact arithmetical knowledge in animals. By the very structure of their brains,
they are condemned to an approximate arithmetic.

Humans, however, have been endowed by evolution with a supplementary compe-
tence: the ability to create complex symbol systems, including spoken and written
language. Words or symbols, because they can separate concepts with arbitrarily close
meanings, allow us to move beyond the limits of approximation. Language allows us
to label infinitely many different numbers. These labels, the most evolved of which are
the Arabic numerals, can symbolize and discretize any continuous quantity. Thanks to
them, numbers that may be close in quantity, but whose arithmetical properties are very
different, can be distinguished. Only then can the invention of purely formal rules for
comparing, adding, or dividing two numbers be conceived. Indeed, numbers acquire a
life of their own, devoid of any direct reference to concrete sets of objects. The scaffolding
of mathematics can then rise, ever higher, ever more abstract.

This raises a paradox, however. Our brains have remained essentially unchanged since
Homo sapiens first appeared 100,000 years ago. Our genes, indeed, are condemned to a
slow and minute evolution, dependent on the occurrence of chance mutations. It takes
thousands of aborted attempts before a favorable mutation, one worthy of being passed
on to coming generations, emerges from the noise. In contrast, cultures evolve through a
much faster process. Ideas, inventions, progress of all kinds, can spread to an entire popu-
lation through language and education as soon as they have germinated in some fertile
mind. This is how mathematics, as we know it today, has emerged in only a few thousand
years. The concept of number, hinted at by the Babylonians, refined by the Greeks, puri-
fied by the Indians and the Arabs, axiomatized by Dedekind and Peano, generalized by
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Galois, has never ceased to evolve from culture to culture—obviously, without requiring
any modification of the mathematician’s genetic material! In a first approximation,
Einstein’s brain is no different from that of the master who, in the Magdalenian, painted
the Lascaux cave. At elementary school, our children learn modern mathematics with a
brain initially designed for survival in the African savanna.

How can we reconcile such biological inertia with the lightning speed of cultural
evolution? Thanks to extraordinary modern tools, such as positron emission tomography
or functional magnetic resonance imaging, the cerebral circuits that underlie language,
problem solving, and mental calculation can now be imaged in the living human brain.
We will see that when our brain is confronted with a task for which it was not prepared
by evolution, such as multiplying two digits, it recruits a vast network of cerebral areas
whose initial functions are quite different, but which may, together, reach the desired
goal. Aside from the approximate accumulator that we share with rats and pigeons, our
brain probably does not contain any “arithmetical unit” predestined for numbers and
math. It compensates this shortcoming, however, by tinkering with alternative circuits
that may be slow and indirect, but are more or less functional for the task at hand.

Cultural objects—for instance, written words or numbers—may thus be considered
as parasites that invade cerebral systems initially destined to a quite different use.
Occasionally, as in the case of word reading, the parasite can be so intrusive as to
completely replace the previous function of a given brain area with its own. Thus, some
brain areas that, in other primates, seem to be dedicated to the recognition of visual
objects acquire in the literate human a specialized and irreplaceable role in the identifica-
tion of letter and digit strings.

One cannot but marvel at the flexibility of a brain that can, depending on context and
epoch, plan a mammoth hunt or conceive of a demonstration of Fermat’s last theorem.
However, this flexibility should not be overestimated. Indeed, my contention is that it
is precisely the assets and the limits of our cerebral circuits that determine the strong
and weak points of our mathematical abilities. Our brain, like that of the rat, has been
endowed since time immemorial with an intuitive representation of quantities. This
is why we are so gifted for approximation, and why it seems so obvious to us that 10 is
larger than 5. Conversely, our memory, unlike that of the computer, is not digital but
works by association of ideas. This is probably the reason why we have such a hard time
remembering the small number of equations that make up the multiplication table.

Just as the budding mathematician’s brain thus lends itself more or less easily to the
requirements of mathematics, mathematical objects also evolve to match our cerebral
constraints increasingly well. The history of mathematics provides ample evidence that
our concepts of number, far from being frozen, are in constant evolution. Mathematicians
have worked hard for centuries to improve the usefulness of numerical notations by
increasing their generality, their fields of application, and their formal simplicity. In doing
s0, they have unwittingly invented ways of making them fit the constraints of our cerebral

organization. Though a few years of education now suffice for a child to learn digital
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notation, we should not forget that it took centuries to perfect this system before it
became child’s play. Some mathematical objects now seem very intuitive only because
their structure is well adapted to our brain architecture. On the other hand, a great many
children find fractions very difficult to learn because their cortical machinery resists
such a counterintuitive concept.

If the basic architecture of our brain imposes such strong limits on our understanding
of arithmetic, why do a few children thrive on mathematics? How have outstanding
mathematicians such as Gauss, Einstein, or Ramanujan attained such extraordinary
familiarity with mathematical objects? And how do some idiot savants with an IQ of
50 manage to become experts in mental calculation? Do we have to suppose that some
people started in life with a particular brain architecture, or a biological predisposition
to become geniuses? A careful examination of this supposition will show us that this is
unlikely. At present, at any rate, very little evidence exists that great mathematicians and
calculating prodigies have been endowed with an exceptional neurobiological structure.
Like the rest of us, experts in arithmetic have to struggle with long calculations and
abstruse mathematical concepts. If they succeed, it is only because they devote a consider-
able time to this topic and eventually invent well-tuned algorithms and clever shortcuts
that any of us could learn if we tried, and that are carefully devised to take advantage of
our brain’s assets and get round its limits. What is special about them is their dispropor-
tionate and relentless passion for numbers and mathematics, occasionally fueled by their
inability to entertain normal relations with other fellow humans, a cerebral disease called
autism. I am convinced that children of equal initial abilities may become excellent or
hopeless at mathematics depending on their love or hatred of the subject. Passion breeds
talent—and parents and teachers, therefore, have a considerable responsibility in devel-
oping their children’s positive or negative attitudes toward mathematics.

In Gulliver’s Travels, Jonathan Swift describes the bizarre teaching methods used at the

mathematics school of Lagado, in Balnibarbi Island:

I was at the mathematical school, where the master taught his pupils after a method
scarcely imaginable to us in Europe. The proposition and demonstration were fairly
written on a thin wafer, with ink composed of a cephalic tincture. This the student
was to swallow upon a fasting stomach, and for three days following cat nothing but
bread and water. As the wafer digested, the tincture mounted to his brain, bearing
the proposition along with it. But the success hath not hitherto been answerable,
partly by some error in the guantum or composition, and partly by the perverseness
of lads, to whom this bolus is so nauseous, that they generally steal aside, and
discharge it upwards before it can operate; neither have they been yet persuaded to

use so long an abstinence as the prescription requires.

Although Swift’s description reaches the height of absurdity, his basic metaphor of

learning mathematics as a process of assimilation has an undeniable truth. In the final
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analysis, all mathematical knowledge is incorporated into the biological tissues of the
brain. Every single mathematics course that our children take is made possible by
the modifications of millions of their synapses, implying widespread gene expression and
the formation of billions of molecules of neurotransmitters and receptors, with modula-
tion by chemical signals reflecting the child’s level of attention and emotional involve-
ment in the topic. Yet the neuronal networks of our brains are not perfectly flexible.
The very structure of our brain makes certain arithmetical concepts casier to “digest”
than others.

I hope that the views I am defending here will eventually lead to improvements in
teaching mathematics. A good curriculum would take into account the assets and limits
of the learner’s cerebral structure. To optimize the learning experiences of our children,
we should consider what impact education and brain maturation have on the organiza-
tion of mental representations. Obviously, we are still far from understanding to what
extent learning can modify our brain machinery. The little that we already know could be
of some use, however. The fascinating results that cognitive scientists have accumulated
for the last twenty years on how our brain does math have not, until now, been made
public and allowed to percolate through to the world of education. I would be delighted
if this book served as a catalyst for improved communication between the cognitive and
education sciences.

This book will take you on a tour of arithmetic as seen from the eyes of a biologist, but
without neglecting its cultural components. In Chapters 1 and 2, through an initial visit
of animals’ and human infants’ abilities for arithmetic, I shall try to convince you that our
mathematical abilities are not without biological precursors. Indeed, in Chapter 3 we
shall find many traces of the animal mode of processing numbers still at work in adult
human behavior. In Chapters 4 and 5, by observing how children learn to count and to
calculate, we shall then attempt to understand how this initial approximate system can
be overcome, and the difficulties that the acquisition of advanced mathematics raises
for our primate brain. This will be a good occasion to investigate current methods of
mathematical teaching and to examine the extent to which they have naturally adapted to
our mental architecture. In Chapter 6 we shall also try to sort out the characteristics that
distinguish a young Einstein or a calculating prodigy from the rest of us. In Chapters 7
and 8, finally, our number hunt will end up in the fissures of the cerebral cortex, where the
neuronal circuits that support calculation are located, and from which, alas, they can be
dislodged by a lesion or a vascular accident, thus depriving otherwise normal persons of

their number sense.
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TALENTED AND GIFTED ANIMALS

BOOKS ON NATURAL history have recounted the following anecdote since the eigh-

teenth century:

A nobleman wanted to shoot down a crow that had built its nest atop a tower on his
domain. However, whenever he approached the tower, the bird flew out of gun
range and waited until the man departed. As soon as he left, it returned to its nest.
The man decided to ask a neighbor for help. The two hunters entered the tower
together, and later only one of them came out. But the crow did not fall into this
trap, and carefully waited for the second man to come out before returning. Neither
did three, then four, then five men fool the clever bird. Each time, the crow would
wait until all the hunters had departed. Eventually, the hunters came as a party
of six. When five of them had left the tower, the bird, not so numerate after all,
confidently came back, and was shot down by the sixth hunter.

Is this anecdote authentic? Nobody knows. It is not even clear that it has anything to
do with numerical competence: For all we know, the bird could have memorized the
visual appearance of each hunter rather than their number. Nevertheless, I decided to
highlight it because it provides a splendid illustration of many aspects of animal arith-
metic that are the subject of this chapter. First, in many tightly controlled experiments,
birds and many other animal species appear to be able to perceive numerical quantities

without requiring special training. Second, this perception is not perfectly accurate, and
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its accuracy decreases with increasingly larger numbers; hence the bird confounding 5
and 6. Finally, and more facetiously, the anecdote shows how the forces of Darwinian
selection also apply to the arithmetical domain. If the bird had been able to count up
to 6, perhaps it would never have been shot! In numerous species, estimating the number
and ferocity of predators, or quantifying and comparing the return of two sources of
food, are matters of life and death. Such evolutionary arguments should help make sense
of the many scientific experiments that have revealed sophisticated procedures for

numerical calculation in animals.

A Horse Named Hans

At the beginning of this century, a horse named Hans made it to the headlines of German
newspapers.! His master, Wilhelm von Osten, was no ordinary circus animal trainer.
Rather, he was a passionate man who, under the influence of Darwin’s ideas, had set out
to demonstrate the extent of animal intelligence. He wound up spending more than a
decade teaching his horse arithmetic, reading, and music. Although the results were slow
to come, they eventually exceeded all his expectations. The horse seemed gifted with a
superior intelligence. It could apparently solve arithmetical problems and even spell out
words!

Demonstrations of Clever Hans’s abilities often took place in von Osten’s yard. The
public would form a half-circle around the animal and suggest an arithmetical question
to the trainer—for instance, “‘How much is 5 plus 3?” Von Osten would then present the
animal with five objects aligned on a table, and with three other objects on another table.
After examining the “problem,” the horse responded by knocking on the ground with its
hoof the number of times equal to the total of the addition. However, Hans’s mathe-
matical abilities far exceeded this simple feat. Some arithmetical problems were spoken
aloud by the public, or were written in digital notation on a blackboard, and Hans could
solve them just as easily (Figure 1.1). The horse could also add two fractions such as 2/5
and 1/2 and give the answer 9/10 by striking nine times, then ten times with its hoof. It
was even said that to the question of determining the divisors of 28, Hans came out very
appropriately with the answers 2, 4, 7, 14, and 28. Obviously, Hans’s number knowledge
surpassed by far what an elementary school teacher would expect today of a reasonably
bright pupil!

In September 1904, a committee of experts, among whom figured the eminent German
psychologist Carl Stumpf, concluded after an extensive investigation that Hans’s feats
were real and not a result of cheating. This generous conclusion, however, did not satisfy

Oskar Pfungst, one of Stumpf’s own students. With von Osten’s help—the master was

!Fernald, 1984
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FIGURE 1.1. Clever Hans and his master Wilhelm von Osten strike a pose in front of an impressive
array of arithmetic problems. The larger blackboard shows the numerical coding the horse used to
spell words.

(Copyright © Bildarchiv Preussicher Kulturbesitz.)

tully convinced of his prodigy’s superior intelligence—he began a systematic study of the
horse’s abilities. Pfungst’s experiments, even by today’s standards, remain a model of rigor
and inventiveness. His working hypothesis was that the horse could not but be totally
inept in mathematics. Therefore, it had to be the master himself, or someone in the public,
who knew the answer and sent the animal a hidden signal when the target number of
strokes had been reached, thus commanding the animal to stop knocking with its hoof.

To prove this, Pfungst invented a way of dissociating Hans’s knowledge of a problem
from what its master knew. He used a procedure that differed only slightly from the one
described above. The master watched carefully as a simple addition was written in large
printed characters on a panel. The panel was then oriented toward the horse in such a way
that only it could see the problem and answer it. However, on some trials, Pfungst surrep-
titiously modified the addition before showing it to the horse. For instance, the master
could see 6+ 2, whereas in fact the horse was trying to solve 6 + 3.

The results of this experiment, and of a series of follow-up controls, were clear-cut.
Whenever the master knew the correct response, Hans got the right answer. When, on
the contrary, the master was not aware of the solution, the horse failed. Moreover, the
horse often produced an error that matched the numerical result expected by its master.
Obviously, it was von Osten himself, rather than Hans, who was finding the solution to
the various arithmetical problems. But how then did the horse know how to respond?
Pfungst eventually deduced that Hans’s truly amazing ability lay in detecting minuscule
movements of its master’s head or eyebrows that invariably announced the time to

stop the series of knocks. In fact, Pfungst never doubted that the trainer was sincere.
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He believed that the signals were completely unconscious and involuntary. Even when
von Osten was absent, the horse continued to respond correctly: Apparently, it detected
the buildup of tension in the public as the expected number of hoof strokes was attained.
Pfungst himself could never eliminate all forms of involuntary communication with the
animal, even after he discovered the exact nature of the body clues it used.

Pfungst’s experiments largely discredited demonstrations of “animal intelligence” and
the competence of self-proclaimed experts such as Stumpf who had blindly subscribed to
them. Indeed, the “Clever Hans phenomenon” is still taught in psychology classes today.
It remains a symbol of the pernicious influence that experimenter expectations and inter-
ventions, however small, may have on the outcome of any psychological experiment with
humans or with animals. Historically, Hans’s story has played a crucial role in shaping the
critical minds of psychologists and ethologists. It has drawn attention to the necessity for
a rigorous experimental design. Since an essentially invisible stimulation, as brief as the
blink of an eye, can influence the performance of animals, a well-designed experiment has
to be devoid from the start of any possible source of errors. This lesson was particularly
well received by behaviorists, such as B. F. Skinner, who dedicated a large amount of
work to the development of rigorous experimental paradigms for the study of animal
behavior.

Unfortunately, Hans’s exemplary case has also had more negative consequences on the
development of psychological science. It has imposed an aura of suspicion onto the whole
area of research on the representation of numbers in animals. Ironically, scientists now
meet every single demonstration of numerical competence in animals with the same
raised eyebrows that served as a cue to Hans! Such experiments are immediately associ-
ated, consciously or not, with Hans’s story, and are therefore suspected of a basic flaw in
design, if not downright forgery. This is an irrational prejudice, however. Pfungst’s exper-
iments showed only that Hans’s numerical abilities were a fluke. By no means did they
prove that it is impossible for an animal to understand some aspects of arithmetic. For a
long time, however, the scientist’s attitude was to systematically look for some experimen-
tal bias that might explain animal behavior without resorting to the hypothesis that
animals have even an embryonic knowledge of calculation. For a while, even the most
convincing results failed to convince anyone. Some researchers even preferred to attri-
bute to animals mysterious abilities such as a “rhythm discrimination” faculty, for instance,
rather than admit that animals could enumerate a collection of objects. In brief, the
scientific community tended to throw out the baby with the bath water.

Before turning to some of the experiments that finally convinced all but the most
skeptical of researchers, I would like to conclude Hans’s story with a modern anecdote.
Even today, the training of circus animals rests on methods rather similar to Hans’s trick.
If you ever see a show in which an animal adds numbers, spells words, or some surprising
deed of this kind, you may safely bet that its behavior rests, like Hans’s, on a hidden com-
munication with its human trainer. Let me stress again that such communication need

not be intentional. The trainer is often sincerely convinced of his pupil’s gifts. A few years
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ago, I came upon an amusing article in a local Swiss newspaper. A journalist had visited
the home of Gilles and Caroline P., whose poodle, named Poupette, seemed extraordi-
narily gifted in mathematics. Figure 1.2 shows Poupette’s proud owner presenting his
faithful and brilliant companion with a series of written digits that it was supposed to
add. Poupette responded without ever making an error by tapping on its master’s hand
with its paw the exact number of times required, and then licking the hand after the
correct count had been reached. According to its master, the canine prodigy had required
only a brief training period, which led him to believe in reincarnation or some similar
paranormal phenomenon. The journalist, however, wisely noted that the dog could react
to subtle cues from the master’s eyelids, or to some tiny motions of his hand when the
correct count was reached. So this was indeed a case of reincarnation after all: the reincar-
nation of Clever Hans’s stratagem, of which Poupette’s story constituted, a century later,

an astonishing replication.

Rat Accountants

Following the Hans episode, several renowned American laboratories developed research
programs on animal mathematical abilities. Many such projects failed. A famous German
ethologist named Otto Kochler, however, was more successful. One of his trained crows,
Jacob, apparently learned to choose, among several containers, the one whose lid bore a
fixed number of five points. Because the size, the shape, and the location of the points

varied randomly from trial to trial, only an accurate perception of the number 5 could

FIGURE 1.2. A modern canine “clever Hans”: Poupette, the dog that could supposedly add digits.

2Koehler, 1951
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account for this performance. Nevertheless, the results achieved by Koehler’s team had
little impact, partly because most of their results were published only in German, and
partly because Koehler failed to convince his colleagues that all possible sources of error,
such as unintentional experimenter communication, olfactory cues or the like, had been
excluded.

In the 1950s and 1960s, Francis Mechner, an animal psychologist at Columbia
University, followed by John Platt and David Johnson at the University of lowa, intro-
duced a very convincing experimental paradigm that I shall schematically describe here.?
A rat that had been temporarily deprived of food was placed in a closed box with two
levers, A and B. Lever B was connected to a mechanical device that delivered a small
amount of food. However, this reward system did not work at once. The rat first had
to repeatedly press lever A. Only after it had pressed for a fixed number of times 7 on
lever A could it switch to lever B and get its deserved treat. If the rat switched too early to
lever B, not only did it fail to get any food, but it received a penalty. On different experi-
ments, the light could go off for a few seconds, or the counter was reset so that the rat had
to start all over again with a new series of 7 presses on lever A.

How did rats behave in this rather unusual environment? They initially discovered, by
trial and error, that food would appear when they pressed several times on lever A, and
then once on lever B. Progressively, the number of times that they had to press was
estimated more and more accurately Eventually, at the end of the learning period, the
rats behaved very rationally in relation to the number 7 that had been selected by the
experimenter. The rats that had to press four times on lever A, before lever B would deliver
food, did press it about four times. Those that were placed in the situation where eight
presses were required waited until they had produced about eight squeezes, and so on
(see Figure 1.3). Even when the requisite number was as high as twelve or sixteen, those
clever rat accountants continued to keep their registers up to date!

Two details are worth mentioning. First, the rats often squeezed lever A a little more
than the minimum required—five times instead of four, for instance. Again, this was an
eminently rational strategy. Since they received a penalty for switching prematurely to
lever B, the rats preferred to play it safe and press lever A once more, rather than once less.
Second, even after considerable training, the rats’ behavior remained rather imprecise.
Where the optimal strategy would have been to press lever A exactly four times, the rats
often pressed it four, five, or six times, and on some trials they squeezed it three or even
seven times. Their behavior was definitely not “digital,” and variation was considerable
from trial to trial. Indeed, this variability increased in direct proportion to the target
number that the rats estimated. When the target number of presses was four, the rats’
responses ranged from three to seven presses, but when the target was sixteen, the

responses went from twelve to twenty-four, thus covering a much larger interval. The rats

3Mechner, 1958; Platt & Johnson, 1971
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FIGURE 1.3. Inan experiment by Mechner, a rat learns to press lever A a predetermined number
of times before turning to a second lever B. The rat matches approximately the number selected by
the experimenter, although its estimate becomes increasingly variable as the numbers get larger.

(Adapted from Mechner 1958 by permission of the author and publisher; copyright © 1958 by the Society for the
Experimental Analysis of Behavior.)

appeared to be equipped with a rather imprecise estimation mechanism, quite different
from our digital calculators.

At this stage, many of you are probably wondering whether I am not too liberal in
attributing numerical competence to rats, and whether a simpler explanation of their
behavior might not be found. Let me first remark that the Clever Hans effect cannot have
any influence on this type of experiment, because the rats are isolated in their cages and
because all experimental events are controlled by an automated mechanical apparatus.
However, is the rat really sensitive to the zumber of times the lever is pressed, or does it
estimate the #ime elapsed since the beginning of a trial, or some other nonnumerical
parameter? If the rat pressed at a regular rate, for instance once per second, then the
above behavior might be fully explained by temporal rather than numerical estimation.
While pressing on lever A, the rat would wait four, eight, twelve, or sixteen seconds,
depending on the imposed schedule, before switching to lever B. This explanation
might be considered simpler than the hypothesis that rats can count their movements—
although, in fact, estimating duration and numbers are equally complex operations.

To refute such a temporal explanation, Francis Mechner and Laurence Guevrekian®
used a very simple control: They varied the degree of food deprivation imposed on the

rats. When the rats are really hungry, and therefore eager to obrtain their food reward as

4Mechner & Guevrekian, 1962
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fast as possible, they press the levers much faster. Nevertheless, this increase in rate has
absolutely no effect on the number of times they press the lever. The rats that are trained
with a target number of four presses continue to produce between three and seven presses,
while the rats trained to squeeze eight times continue to squeeze about eight times, and
so on. Neither the average number of presses, nor the dispersion of the results, is modified
with higher rates. Obviously, a numerical rather than a temporal parameter drives the
rats’ behavior.

A more recent experiment by Russell Church and Warren Meck, at Brown University,
demonstrates that rats spontaneously pay as much attention to the number of events as to
their duration. In Church and Meck’s experiment,’ a loudspeaker placed in the rats
cage presented a sequence of tones. There were two possible sequences. Sequence A was
made up of two tones and lasted a total of two seconds, whereas sequence B was made up
of eight tones and lasted eight seconds. The rats had to discriminate between the two
melodies. After each tune, two levers were inserted in the cage. To receive a food reward,
the rats had to press the left lever if they had heard sequence A, and the right if they had
heard sequence B (see Figure 1.4).

Several preliminary experiments had shown that rats placed in this situation rapidly
learned to press the correct lever. Obviously, they could use two distinct parameters to
distinguish A from B: the total duration of the sequence (two versus eight seconds) or
the number of tones (two versus eight). Did rats pay attention to duration, number, or
both? In order to find out, the experimenters presented some test sequences in which
duration was fixed while number was varied, and others in which number was fixed while
duration was varied. In the first case, all sequences lasted four seconds, but were made up
of from two to cight tones. In the second case, all sequences were made up of four tones,
but duration extended from two to eight seconds. On all such test sequences, the rats
always received a food reward, regardless of the lever they picked. In anthropocentric
terms, the researchers were simply asking what these new stimuli sounded like to the
rats, without letting the reward interfere with their decision. The experiment therefore
measured the rats’ ability to generalize previously learned behaviors to a novel situation.

The results are clear-cut. Rats generalized just as casily on duration as on number.
When duration was fixed, they continued to press the left lever when they heard two
tones, and the right lever when they heard eight tones. Conversely, when number was
fixed, they pressed left for two-second sequences, and right for eight-second sequences.
But what about intermediate values? Rats apparently reduced them to the closest stimulus
that they had learned. Thus, the new three-tone sequence elicited the same response as
the two-tone sequence used for training, while sequences with five or six tones were
classified just as the original sequence of cight tones had been. Curiously, when the

sequence comprised just four tones, the rats could not decide whether they should press

5 Church & Meck, 1984
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FIGURE 1.4. Meck and Church trained rats to press a lever on the left when they heard a

short two-tone sequence, and a lever on the right when they heard a long eight-tone sequence.
Subsequently, the rats generalized spontaneously: for equal numbers of sounds, they discriminated
two-second sequences from eight-second sequences (top panel), and for an equal total duration,
they discriminated two tones from eight tones (bottom panel). In both cases, four seems to be the
“subjective middle” of 2 and 8, the point where rats cannot decide whether they should press right
or left.

(Adapted from Meck and Church 1983.)

left or right. For a rat, four appears to be the subjective midpoint between the numbers
two and eight!

Keep in mind that the rats did not know during training that they would be tested
subsequently with sequences that varied in duration or in number of tones. Hence, this
experiment shows that when a rat listens to a melody, its brain simultaneously and
spontancously registers both the duration and the number of tones. It would be a serious
mistake to think that because these experiments use conditioning, they somehow teach

the rats how to count. On the contrary, rats appear on the scene with state-of-the-art
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hardware for visual, auditory, tactile, and numerical perception. Conditioning merely
teaches the animal to associate perceptions that it has always experienced, such as repre-
sentations of stimulus duration, color, or number, with novel actions such as pressing a
lever. There is no reason to think that number is a complex parameter of the external
world, one that is more abstract than other so-called objective or physical parameters
such as color, position in space, or temporal duration. In fact, provided that an animal
is equipped with the appropriate cerebral modules, computing the approximate number
of objects in a set is probably no more difficult than perceiving their colors or their
positions.

Indeed, we now know that rats and many other species spontaneously pay attention
to numerical quantities of all kinds—actions, sounds, light flashes, food morsels.® For
instance, researchers have proved that raccoons, when presented with several transparent
boxes with grapes inside, can learn to systematically select those that contain three grapes
and to neglect those that contain two or four. Likewise, rats have been conditioned to
systematically take the fourth tunnel on the left in a maze, regardless of the spacing
between consecutive tunnels. Other rescarchers have taught birds to pick the fifth seed
that they find when visiting several interconnected cages. And pigeons can, under some
circumstances, estimate the number of times they have pecked at a target and can
discriminate, for instance, between forty-five and fifty pecks. As a final example, several
animals, including rats, appear to remember the number of rewards and punishments
that they have received in a given situation. An elegant experiment by E. J. Capaldi and
Daniel Miller at Purdue University has even shown that when rats receive food rewards
of two different kinds—say, raisins and cereals—they keep in mind three pieces of infor-
mation at the same time: the number of raisins they have eaten, the number of pieces
of cereals, and the total number of food items.” In brief, far from being an exceptional
ability, arithmetic is quite common in the animal world. The advantages that it confers
for survival are obvious. The rat that remembers that its hideout is the fourth to the left
will move faster in the dark maze of tunnels that it calls home. The squirrel that notices
that a branch bears two nuts, and neglects it for another one that bears three, will have

more chances of making it safely through the winter.

How Abstract Are Animal Calculations?

When a rat presses a lever twice, hears two sounds, and eats two seeds, does it recognize

that these events are all instances of the number “2”? Or can’t it see the link between

¢ For reviews of numerical cognition in animals, see Davis & Pérusse, 1988; Gallistel, 1989; Gallistel, 1990;
Brannon & Terrace, 1998; Dehaene, Dehaene-Lambertz, & Cohen, 1998; Cantlon & Brannon, 2007; Jacob &
Nieder, 2008; Nieder & Dehaene, 2009

7Capaldi & Miller, 1988



numbers that are perceived through different sensory modalities? The ability to generalize
across different modalities of perception or action is an important component of what
we call the number concept. Let us suppose, as an admittedly extreme case, that a child
systematically utters the word “four” whenever he or she sees four objects, but randomly
picks the words “three;” “four,” or “nine” when he or she hears four sounds or makes four
jumps. Although performance is no doubt excellent with visual stimuli, we would be
reluctant to grant the child knowledge of the concept of “4”, because we consider posses-
sion of this concept to entail being able to apply it to many different multimodal situa-
tions. As a matter of fact, as soon as children have learned a number word, they can
immediately use it to count their toy cars, the meows of their cat, or the misdemeanors of
their little brother. What about rats? Is their numerical competence confined to certain
sensory modalities, or is it abstract?

Unfortunately, any answer must remain tentative because few successful experiments
have been done on multimodal generalization in animals. However, Russell Church and
Warren Meck® have shown that rats represent number as an abstract parameter that is not
tied to a specific sensory modality, be it auditory or visual. They again placed rats in a cage
with two levers, but this time stimulated them with visual as well as with auditory
sequences. Initially, the rats were conditioned to press the left lever when they heard two
tones, and the right lever when they heard four tones. Separately, they were also taught to
associate two light flashes with the left lever, and four light flashes with the right lever.
The issue was, how were these two learning experiences coded in the rat brain? Were they
stored as two unrelated pieces of knowledge? Or, had the rats learned an abstract rule
such as “2 is left, and 4 is right”? To find out, the two rescarchers presented mixtures of
sounds and light flashes on some trials. They were amazed to observe that when they
presented a single tone synchronized with a flash, a total of two events, the rats immedi-
ately pressed the left lever. Conversely, when they presented a sequence of two tones
synchronized with two light flashes, for a total of four events, the rats systematically
pressed the right lever. The animals generalized their knowledge to an entirely novel
situation. Their concepts of the numbers “2” and “4” were not linked to a low level of
visual or auditory perception.

Consider how peculiar the rats’ behavior was on trials with two tones synchronized
with two light flashes. Remember that in the course of their training, the rats were always
rewarded for pressing the left lever after hearing two tones, and likewise after seeing two
flashes of light. Thus, both the auditory “two tones” stimulus and the visual “two flashes”
stimulus were associated with pressing the left lever. Nevertheless, when these two stimuli
were presented together, the rats pressed the lever that had been associated with the
number 4! To better grasp the significance of this finding, compare it with a putative

experiment in which rats are trained to press the left lever whenever they see a square

8 Church & Meck, 1984
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(as opposed to a circle), and to respond left whenever they see the color red (as opposed
to green). If the rats were presented with a red square—the combination of both
stimuli—I bet that they would press even more resolutely on the left lever. Why are the
numbers of tones and flashes grasped differently from shapes and colors? The experiment
demonstrates that rats “know,” to some extent, that numbers do not add up in the same
way as shapes and colors. A square plus the color red makes a red square, but two tones
plus two flashes do not evoke an even greater sensation of twoness. Rather, 2 plus 2
makes 4, and the rat brain seems to appreciate this fundamental law of arithmetic.
Perhaps the best example of abstract addition abilities in an animal comes from work
done by Guy Woodruff and David Premack at the University of Pennsylvania.’ They set
out to prove that a chimpanzee could do arithmetic with simple fractions. In their first
experiment, the chimpanzee’s task was simple: It was rewarded for selecting, among two
objects, the one that was physically identical to a third one. For instance, when presented
with a glass half-filled with a blue liquid, the animal had to point toward the identical
glass when presented next to another glass that was filled up to three-quarters of its
volume. The chimp immediately mastered this simple physical matching task. Then the
decision was progressively made more abstract. The chimp might be shown a half-full
glass again, but now the options were cither half an apple or three-quarters of an apple.
Physically speaking, both alternatives differed widely from the sample stimulus; yet the
chimpanzee consistently selected the half apple, apparently basing its responses on the
conceptual similarity between half a glass and half an apple. Fractions of one-quarter,
one-half, and three-quarters were tested with similar success: The animal knew that one-
quarter of a pie is to a whole pie as one-quarter of a glass of milk is to a full glass of milk.
In their last experiment, Woodruff and Premack showed that chimpanzees could even
mentally combine two such fractions: When the sample stimulus was made of one-quarter
apple and one-half glass, and the choice was between one full disc or three-quarters disc,
the animals chose the latter more often than chance alone would predict. They were obvi-
ously performing an internal computation not unlike the addition of two fractions: % +
Y2 = %. Presumably, they did not use sophisticated symbolic calculation algorithms as we
would. But they clearly had an intuitive grasp of how these proportions should combine.
A final anecdote concerning Woodruff and Premack’s work: Though the manuscript
reporting their work was initially titled “Primitive mathematical concepts in the chim-
panzee: proportionality and numerosity,” an editorial error made it appear in the pages of
the scientific journal Nature under the heading “Primative mathematical concepts”!
Involuntary as it was, this alteration was not so improper. For primitive, indeed, the
animal’s ability was not. And if “primative” was taken to mean “specific to primates,” then
the neologism seemed very appropriate here, because such an abstract ability to add

fractions has not been observed in any other species so far.

?Woodruff & Premack, 1981



Addition, however, is not the only numerical operation in the animal repertoire. The
ability to compare two numerical quantities is an even more fundamental ability, and
indeed it is widespread among animals. Show a chimpanzee two trays on which you have
placed several bits of chocolate.”” On the first tray, two piles of chocolate chips are visible,
one with four pieces, and the other with three pieces. The second tray contains a pile with
five pieces of chocolate and, separate from it, a single piece. Leave the animal enough time
to watch the situation carefully before letting it choose one tray and eat its content.
Which tray do you think that it will pick? Most of the time, without training, the chim-
panzee selects the tray with the largest total number of chocolate chips (see Figure 1.5).
Hence, the greedy primate must spontaneously compute the total of the first tray
(4+3=7), then the total of the second tray (5 + 1 =6), and finally it must reckon that 7
is larger than 6 and that it is therefore advantageous to choose the first tray. If the chimp
could not do the additions, but was content with choosing the tray with the largest single
pile of chocolates, it should have been wrong in this particular example because, while the
pile with five chips on the second tray exceeds each of the piles on the first tray, the total
amount of chips on the first tray is larger. Clearly, the two additions and the final

comparison operation are all required for success.

FIGURE 1.5. A chimpanzee spontaneously selects the pair of trays with the greater total number
of chocolate bits, revealing its inborn ability to add and compare approximate numerosities.
(Reprinted from Rumbaugh et al. 1987.)

' Rumbaugh, Savage-Rumbaugh, & Hegel, 1987
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Although chimps perform remarkably well in selecting the larger of two numbers,
their performance is not devoid of errors. As is frequently the case, the nature of these
errors provides important cues about the nature of the mental representation employed.”
When the two quantities are quite different, such as 2 and 6, chimpanzees hardly ever
fail: They always select the larger. As the quantities become closer, however, performance
systematically decreases. When the two quantities differ by only one unit, only 70% of
the chimp’s choices are correct. This systematic dependency of error rate on the numerical
separation between the items is called the distance effect. It is also accompanied by a
magnitude effect. For equal numerical distances, performance decreases as the numbers to
be compared become larger. Chimpanzees have no difficulty in determining that 2 is
larger than 1, even though these two quantities differ only by one unit. However, they fail
increasingly more often as one moves to larger numbers such as 2 versus 3, 3 versus 4, and
so on. Similar distance and magnitude effects have been observed in a great variety of
tasks and in many species, including pigeons, rats, dolphins, and apes. No animals seem
able to escape these laws of behavior—including, as we shall see later, Homo sapiens.

Why are these effects of distance and magnitude important? Because they
demonstrate, once again, that animals do not possess a digital or discrete representation
of numbers. Only the first few numbers—1, 2, and 3—can be discriminated with
high accuracy. As soon as one advances toward larger quantities, fuzziness increases.
The variability in the internal representation of numbers grows in direct proportion to
the quantity represented. This is why, when numbers get large, an animal has problems
distinguishing number 7 from its successor 7 + 1. One should not conclude, however, that
large numbers are out of reach of the rat or pigeon brain. In fact, when numerical distance
is sufficiently large, animals can successfully discriminate and compare very large numbers,
on the order of 45 versus 50. Their imprecision simply leaves them blind to the finesses of
arithmetic such as the difference between 49 and 50.

Within the limits set by this internal imprecision, we have seen through numerous
examples that animals possess functional mathematical tools. They can add two quantities
and spontancously choose the larger of two sets. Should we really be that surprised? Let
us first try to think whether the outcome of these experiments could possibly have been
any different. When a hungry dog is offered a choice between a full dish and a half-full
one of the same food, doesn’t it spontancously pick the larger meal? Acting otherwise
would be devastatingly irrational. Choosing the larger of two amounts of food is probably
one of the preconditions for the survival of any living organism. Evolution has been able
to conceive such complex strategies for food gathering, storing, and predation, that it
should not be astonishing that an operation as simple as the comparison of two quantities
is available to so many species. It is even likely that a mental comparison algorithm was

discovered early on, and perhaps even reinvented several times in the course of evolution.

' Dehaene, Dehaene-Lambertz et coll., 1998



Even the most clementary of organisms, after all, are confronted with a never-ending
search for the best environment with the most food, the fewest predators, the most
partners of the opposite sex, and so on. One must optimize in order to survive, and
compare in order to optimize.

We still have to understand, however, by what neural mechanisms such calculations
and comparisons are carried out. Are there minicalculators in the brains of birds, rats, and

primates? How do they work?

The Accumulator Metaphor

How can a rat know that 2 plus 2 makes 4? How can a pigeon compare forty-five pecks
with fifcy? I know by experience that these results are often met with disbelief, laughter, or
evenexasperation—especiallywhen theaudienceis composed of professors of mathematics!
Our Western societies, ever since Euclid and Pythagoras, have placed mathematics at the
pinnacle of human achievements. We view it as a supreme skill that either requires painful
education, or comes as an innate gift. In many a philosopher’s mind, the human ability for
mathematics derives from our competence for language, so that it is inconceivable that an
animal without language can count, much less calculate with numbers.

In this context, the observations about animal behavior that I have just described are
in danger of being simply disregarded, as often happens with unexpected or seemingly
aberrant scientific results. Without a theoretical framework to support them, they might
appear as isolated findings—peculiar indeed, but eventually inconclusive and certainly not
sufficient to question the equation “mathematics = language.” To sort out such phenomena,
we need a theory that explains, quite simply, how it is possible to count without words.

Fortunately, such a theory exists.”” In fact, we all know of mechanical devices whose
performances are not so different from those of rats. All cars, for instance, are equipped
with a counting mechanism that keeps a record of the number of miles that have accumu-
lated since the vehicle was first put in circulation. In its simplest version, this “counter” is
just a cog wheel that advances by one notch for each additional mile. At least in principle,
this example shows how a simple mechanical device may keep a record of an accumulated
quantity. Why could a biological system not incorporate similar principles of counting?

The car counter is an imperfect example because it uses digital notation, a symbolic
system that is most probably specific to humans. In order to account for the arithmetical
abilities of animals, we should look for an even simpler metaphor. Imagine Robinson
Crusoe, on his desert island, alone and helpless. For the sake of argument, let us even
imagine that a blow to the head has deprived him of any language, leaving him unable to

use number words for counting or calculation. How could Robinson build an approximate

2Meck & Church, 1983
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calculator using only the makeshift means available to him? This is actually easier than it
would seem. Suppose that Robinson has discovered a spring in the vicinity. He carves a
tank from alarge log, and places this accumulator next to the spring, so that water does not
flow directly into it but can be temporarily diverted by using a small bamboo pipe. With
this rudimentary device, of which the accumulator is the central component, Robinson
will be able to count, add, and compare approximate numerical magnitudes. In essence,
the accumulator enables him to master arithmetic as well as a rat or a pigeon does.

Suppose that a canoe loaded with cannibals approaches Robison’s island. How can
Robinson, who is following this scene with a telescope, keep a record of the number of
attackers using his calculator? First, he would have to empty the accumulator. Then, each
time a cannibal landed, Robinson would briefly divert some water from the spring into
the accumulator. Furthermore, he does this so that it always takes a fixed amount of time
and that the water flow remains constant throughout. Thus, for cach attacker to be
counted, a more or less fixed amount of water flows into the accumulator. In the end, the
water level in the accumulator will be equal to 7 times the amount of water diverted at
each step. This final water level may then serve as an approximate representation of the
number 7 of cannibals who have landed. This is because it depends only on the number
of events that have been counted. All other parameters, such as the duration of each
event, the time interval between them, and so on, have no influence on it. The final level
of water in the accumulator is thus completely equivalent to number.

By marking the level reached by water in the accumulator, Robinson can keep a record
of how many people have landed, and he may use this number in later calculations. The
next day, for instance, a second canoe approaches. To estimate the total number of
attackers, Robinson first fills the accumulator up to the level of the preceding day’s marker,
and then adds a fixed amount of water for each newcomer, just as he did previously The
new water level, after this operation is completed, will represent the result of the addition
of attackers in the first canoe and in the second. Robinson can keep a permanent record
of this computation by carving a different mark on the accumulator.

The day after, a few savages leave the island. To evaluate their number, Robinson empties
his accumulator and repeats the above procedure, adding some water for each departing
cannibal. He realizes that the final water level, which represents the number of people who
have left, is much lower than the previous day’s mark. By comparing the two water levels,
Robinson reaches the worrisome conclusion that, in all likelihood, the number of natives
that have left is smaller than the number of natives that have arrived in the past two days.
In brief, Robinson, using his rudimentary device, can count, compute simple additions,
and compare the results of his calculations, just like the animals in the above experiments.

A clear drawback of the accumulator is that numbers, although they form a discrete
set, are represented by a continuous variable: water level. Given that all physical systems
arc inherently variable, the same number may be represented, at different times, by
different amounts of water in the accumulator. Let us suppose, for instance, that water

flow is not perfectly constant and varies randomly by between 4 and 6 liters per second,



with a mean of 5 liters per second. If Robinson diverts water for two-tenths of a second
into the accumulator, one liter on average will be transferred. However, this quantity will
vary from 0.8 to 1.2 liters. Thus, if five items are counted, the final water level will vary by
between 4 and 6 liters. Given that the very same levels could have been reached if four or
six items had been counted, Robinson’s calculator is unable to reliably discriminate the
numbers 4, 5, and 6. If six cannibals land, and later only five depart, Robinson is in danger
of failing to notice that one of them is missing. This, by the way, is exactly the situation
that confronted the crow in the anecdote I mentioned at the beginning of this chapter!
Robinson clearly will be better able to discriminate numbers that are more different; this
is the distance effect. This effect will be exacerbated as the numbers become larger, thus
reproducing the magnitude effect that also characterizes animal behavior.

One might object that the imaginary Robinson I am describing is not particularly
clever. What prevents him from using marbles instead of imprecise amounts of water?
Dropping in a bowl a single marble for each counted item would provide him with a
discrete and precise representation of their number. In this manner, he would avoid errors
even in the most complex of subtractions. But Robinson’s machine is used here only as a
metaphor for the animal brain. The nervous system—at least the one that rats and pigeons
possess—does not seem to be able to count using discrete tokens. It is fundamentally
imprecise, and seems unable to precisely keep track of the items that it counts; hence its
increasing variance for larger and larger numbers.

Although the accumulator model is described here in a very informal manner, it is
actually a rigorous mathematical model, the equations of which accurately predict
variations in animal behavior as a function of number size and numerical distance.® The
accumulator metaphor thus helps us to understand why rat behavior is so variable from
one trial to the next. Even after considerable training, a rat seems unable to press exactly
four times on a lever, but it can press four, five, or six times on different trials. I believe that
this is due to a fundamental inability to represent numbers 4, 5, and 6 in a discrete and
individualized format, as we do. To a rat, numbers are just approximate magnitudes,
variable from time to time, and as fleeting and elusive as the duration of sounds or the
saturation of colors. Even when an identical sequence of sounds is played twice, rats
probably do not perceive the exact same number of sounds, but only the fluctuating level
of an internal accumulator.

Of course, the accumulator is nothing more than a vivid metaphor that merely
illustrates how a simple physical device can mimic, in considerable detail, experiments on
animal arithmetic. There are no taps and recipients in the brains of rats and pigeons.
Would it be possible, however, to identify, within the cerebrum, neuronal systems that
might occupy a function similar to the components in the accumulator model? This is a

completely open question. Currently, scientists are merely beginning to understand how

B Meck & Church, 1983, and for a more recent treatment, Dehaene, 2007
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certain parameters are modified by various pharmacological substances. Injecting rats
with metamphetamine, for instance, seems to accelerate the internal counter. The rats
injected with this substance respond to a sequence of four sounds as if they had been five
or six. It is as if the flow of water to the accumulator were accelerated by metamphet-
amine. For each item counted, an amount of water larger than usual reaches the accumu-
lator, thus making the final water level too great. This is how a 4 in the input may end up
lookinglike a 6 at the output. We still have little knowledge, however, of the brain regions
in which metamphetamine produces its accelerating effect. Cerebral circuitry is far from

having revealed all its secrets.

Number-Detecting Neurons?

Although the cerebral circuits for number processing remain largely unknown, neural
network simulations can be used to speculate on what their organization may be like.
Neural network models are algorithms that run on a conventional digital computer, but
emulate the kinds of computations that may go on in real brain circuits. Of course, the
simulations are always vastly simplified when compared to the overarching complexity of
real networks of neurons. In most computer models, each neuron is reduced to a digital
unit with an output level of activation varying between 0 and 1. Active units excite or
inhibit their neighbors, as well as more distant units, via connections with a variable
weight, which are analogous to the synapses that connect real neurons. At each step, each
simulated unit sums up the inputs it receives from other units, and switches on or off
depending on whether the sum exceeds a given threshold. The analogy to a real nerve cell
is crude, but one crucial property is preserved: the fact that a great many simple computa-
tions take place at the same time in several neurons distributed within multiple circuits.
Most neurobiologists believe that such massive parallel processing is the key property
that enables brains to perform complex computations in a short time using relatively slow
and unreliable biological hardware.

Can parallel neuronal processing be used to process numbers? With Jean-Pierre
Changeux, a neurobiologist at the Pasteur Institute in Paris, I have proposed a tentative
neural network simulation of how animals extract numbers from their environment
quickly and in parallel® Our model addresses a simple problem that rats and pigeons
routinely solve: given an input retina on which objects of various sizes are displayed, and
given a cochlea on which tones of various frequencies are played, can a network of simu-
lated neurons compute the total number of visual and auditory objects? According to the

accumulator model, this number can be computed by adding to an internal accumulator

" For recent review, see Williamson, Cheng, Etchegaray, & Meck, 2008
5 Dehaene & Changeux, 1993. This model has been later claborated by others: Verguts & Fias, 2004; Verguts,
Fias, & Stevens, 2005. See also Dehaene, 2007, and Pearson, Roitman, Brannon, Platt, & Raghavachari, 2010



a fixed quantity for each input item. The challenge is to do this with networks of simu-
lated nerve cells, and to achieve a representation of number that is independent of the size
and location of visual objects, as well as of the time of presentation of auditory tones.

We solved the problem by first designing a circuit that normalizes the visual input with
respect to size. This network detects the locations occupied by objects on the retina, and
allocates to each object, regardless of size and shape, an approximately constant number
of active neurons on a location map. This normalization step is crucial because it allows
the network to count each object as “one,” regardless of size. As we shall see below, in
mammals this operation may be achieved by circuits of the posterior parietal cortex,
which are known to compute a representation of object location without taking exact
shape and size into account.

In our simulation, a similar operation is also performed for auditory stimuli. Regardless
of the time intervals at which they are reccived, auditory inputs are accumulated in a single
memory store. Once these normalizations for size, shape, and time of presentation have
been accomplished, it is easy to estimate number—one simply has to evaluate the total
neuronal activity in the normalized visual map and in the auditory memory store. This total
is equivalent to the final water level in the accumulator, and it provides a reasonably reliable
estimate of number. In our simulation, the summation operation is taken care of by an array
of units that pool activations from all the underlying visual and auditory units. Under
certain conditions, these output units fire only when the total activity they receive falls
within a predefined interval that varies from one neuron to the next. Each of these simu-
lated neurons, therefore, works as a number detector that reacts only when a certain approx-
imate number of objects is seen (Figure 1.6). One unit in the network, for instance, responds
optimally when presented with four objects—Dbe they, for instance, four visual blobs, four
sounds, or two blobs and two sounds. The same unit reacts infrequently when presented
with three or five objects, and not at all in the remaining cases. It therefore works as an
abstract detector of number 4. The entire number line can be covered by such detectors,
each tuned to a different approximate number, with the precision of tuning decreasing as
one moves to increasingly larger numbers. Because the simulated neurons process all visual
and auditory inputs simultaneously, the array of number detectors responds very quickly—
it can estimate the cardinal of a set of four objects in parallel over the entire retina, without
having to orient in turn toward each item as we do when we count.

Astonishingly, the number-detecting neurons that the model predicts seem to have
been identified at least once in an animal brain. In the 1960s, Richard Thompson, a neu-
roscientist at the University of California at Irvine, recorded the activity of single neu-
rons in the cortex of cats while the animals were presented with series of tones or of light
flashes!® Some cells fired only after a certain number of events. One neuron, for instance,

reacted after six events of any kind, regardless of whether this was six flashes of light,

! Thompson, Mayers, Robertson, & Patterson, 1970
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FIGURE 1.6. A computer-simulated neural network incorporates “numerosity detectors”

that respond preferentially to a specific number of input items (top panel). Each curve shows the
response of a given unit to different numbers of items. Note the decreasing selectivity of responses
as input numerosity increases. In 1970, Thompson and his colleagues recorded similar “number-
coding” neurons in the association cortex of anesthetized cats (bottom panel). The neuron
illustrated here responds preferentially to six consecutive events, either six flashes of light one
second apart, or six tones one or four seconds apart.

(Top, adapted from Dehaene and Changeux 1993; bottom, Thompson et al. 1970. Copyright © 1970 by American

Association for the Advancement of Science).

six brief tones, or six longer tones. Sensory modality did not seem to matter: The neuron
apparently cared only about number. Unlike a digital computer, it did not respond in a
discrete all-or-none manner, cither. Rather, its activation level grew after the fifth item,
reached a peak for the sixth, and decreased for larger numbers of items, a response profile
quite similar to that of the simulated neurons in our model. Several similar cells, each
tuned to a different number, were recorded in a small area of the cat’s cortex.

Thus, there might well be a specialized brain area, equivalent to Robinson’s accumu-

lator, in the animal brain. Unfortunately, Thompson’s study, published in the prestigious



